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Interactive Data
Analysis: The 
Control Project

D
ata analysis is fundamentally an iterative
process in which you issue a query, receive a
response, formulate the next query based on
the response, and repeat. You usually don’t
issue a single, perfectly chosen query and get

the information you want from a database; indeed,
the purpose of data analysis is to extract unknown
information, and in most situations there is no one
perfect query.1 People naturally start by asking broad,
big-picture questions and then continually refine their
questions based on feedback and domain knowledge.2

Consider repeating this process several times over,
sifting through many more results, and you have an
idea of why using advanced data analysis tools is so
complex. Composing Structured Query Language
(SQL) queries for decision-support database manage-
ment systems (DBMSs) isn’t easy, and even users of
graphical query tools find it difficult to generate
insightful queries. 

Although data-mining systems typically don’t pro-
vide complicated query languages, to use these systems
you need to choose a suitable mining algorithm and
carefully tune various algorithm-specific parameters
such as support and confidence for association rule
mining, thresholds for clustering, training sets for clas-
sification, and so on. These usability problems increase
the number of iterations in the analysis process; you
have to try algorithms with different parameters until
you find one that produces useful results. In addition,
many of these tools require complicated, time-con-
suming setup phases before they can be used at all.

Most research in the areas of decision support, data
visualization, statistics, data mining and knowledge
discovery has concentrated on improving a single iter-
ation of the analysis process. Some work has focused
on improving the quality of a particular analysis result
or on reducing the time it takes for each analysis step
or algorithm to provide a complete response.

These fields have progressed greatly, but this
research focus ignores a basic invariant in computing:
Full-scale data analysis will always be slow. As Greg
Papadopoulos, chief technology officer at Sun, points
out, the appetite for data collection, storage, and
analysis is outstripping Moore’s law, meaning that the
time required to analyze  massive data sets is steadily
growing. To date, the result is a worst-case mode of
human-computer interaction: Data analysis is a com-
plex process involving multiple, time-consuming steps,
and a poor or erroneous choice of inputs is not notice-
able until results return at the end of a given step. The
long delay and absolute lack of control during indi-
vidual analysis steps disrupt the user’s concentration
and hamper the data analysis process. This situation is
reminiscent of Herodotus’ lament: “Of all men’s mis-
eries, the bitterest is this: to know so much and have
control over nothing.”

In the Control (Continuous Output and Navigation
Technology with Refinement Online) project at
Berkeley, we are working with collaborators at IBM,
Informix, and elsewhere to explore ways to improve
human-computer interaction during data analysis. The
Control project’s goal is to develop interactive, intu-
itive techniques for analyzing massive data sets. We
focus on systems that iteratively refine answers to
queries and give users online control of processing,
thereby tightening the data analysis process loop. You
can use our techniques in diverse software contexts
including decision support database systems, data visu-
alization, data mining, and user interface toolkits.

BATCH VERSUS ONLINE PROCESSING
Traditional analysis tools have a black-box interface:

The user issues queries, the system processes silently for
a significant period, and then the system returns an exact
answer. Because of the long processing times, this inter-
action is reminiscent of the batch processing of the 1960s

Human insight is crucial for extracting meaning out of massive data sets,
yet current user interactions with databases don’t allow iterative, intuitive
analysis. The Control project looks at ways to give users quicker, more
direct interactivity with the data.
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and 1970s. In contrast, Control systems have an
online interaction mode: Users can control the
system at all times, and the system provides inter-
mediate feedback in the form of approximate or
partial results, which are continually refined as
the system processes more of the input.

We use the term “online” in its most tradi-
tional, time-sharing sense—the perception that
the user is directly connected to the computer
and hence can interact with it in real time. In
contrast, the theory community, although it
uses the term in a somewhat analogous way,
understands “online” to imply a specific set of
problem constraints that are not necessarily

characteristic of our scenarios here. From the exterior,
some Control applications (like online aggregation)
can be classified as anytime algorithms—algorithms
that can produce a meaningful approximate result at
any time during their execution.3 Some of our com-
ponent algorithms are not anytime, however, in that
they do not have a well-defined single result; they are
lower-level operators that run indefinitely within a
data flow, acting on their inputs datum by datum.

Rather than a black box, online systems operate
more like a crystal ball: The user “sees into” the pro-
cessing to get a glimpse of the future final results, and
uses that information to change the ongoing process-
ing, either by adjusting the running operation or by
issuing further requests. This significantly tightens the
data analysis loop: Users can quickly sense if a par-
ticular query or mining algorithm reveals anything
interesting about the data. They can refine or halt the
processing if necessary and issue other queries to inves-
tigate further. 

Control applications have user interface require-
ments that demand a fundamental shift in system per-
formance goals and hence system design. Traditional
query-processing and data-mining algorithms are opti-
mized to complete as quickly as possible. In contrast,
online data analysis processes may never complete—
they produce continuously refining approximate
answers, and users halt them when answers are good
enough. Therefore, Control systems do not attempt
to reduce the total time to completion for a single
analysis step; instead they quickly provide a rough pic-
ture, and they minimize the time that a complete infor-
mation analysis session takes (typically involving
several query iterations).

The challenge is to trade quality and accuracy for
interactive response times, minimizing uneventful dead
time between outputs. At the same time, we want the
system to maximize the rate at which partial or approx-
imate answers approach a correct answer. Optimizing
for these new performance constraints requires a judi-
cious mix of techniques from data delivery, query pro-
cessing, statistical estimation, and user interfaces.

ONLINE PROCESSING SCENARIOS 
Many data-analysis applications are designed to

provide black-box batch behavior for large data sets.
These applications exhibit frustratingly slow behav-
ior that discourages their use. Other analysis tools
either avoid batch behavior by limiting the size of the
input data sets or introduce an expensive data-pre-
processing phase to amortize the cost of batch pro-
cessing over many queries. Both of these approaches
ultimately limit the application’s utility. Such prob-
lematic scenarios occur in current back-office software
(SQL decision-support systems) and in applications
for desktop systems (spreadsheets and online analyt-
ical processing tools), and analyst workstations (sta-
tistics packages and data-mining tools). 

As alternatives to these tools, we have developed
online processing systems including online aggrega-
tion and enumeration, online data visualization, and
online data mining.

Online aggregation
An SQL aggregation query consists of a standard

relational query—selections, projections, and joins—
followed by partitioning of the output into groups and
the computation of summary statistics (aggregate func-
tions) per group. In relational database systems, aggre-
gation queries often require scanning and analyzing a
significant portion of a database. In current relational
systems, these queries are executed in batch mode,
requiring the user to wait a long time. Online query
processing can make aggregation an interactive process.

Consider a user trying to study grading patterns,
starting with the following simple SQL query:

SELECT college, AVG(grade)
FROM enroll
GROUP BY college;

This query requests that the system partition all
records in the enroll table into groups by college, then
return the name and average grade for each college.
In an online aggregation system, this query’s output
can be a set of interfaces, one per output group, as
shown in Figure 1. The user receives a current esti-
mate of the final answer for each output group. In
addition, the system draws a graph showing these esti-
mates and a description of their accuracy. Each esti-
mate is drawn with bars that depict a confidence
interval, which says that with x percent probability,
the current estimate is within an interval of ±ε from the
final answer (x is set to 95 in the figure). The confi-
dence slider on the lower left controls the percentage
probability, which in turn affects the 2ε width of the
bars. In addition, you can use the controls on the
upper left of the screen to stop processing on a group
or speed up or slow down one group relative to oth-
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ers. These controls allow you to dynamically devote
more processing to groups of particular interest.

In the example in Figure 1, the analyst realizes early
on that the grades for colleges D and R are strangely
high. Now more interested in these two colleges, she
uses the controls to speed up their processing. After
quickly getting accurate results for D and R, she can
stop the query and issue another one to “drill-down”
on the grades for only these colleges. For example, she
can check the average grades in these two colleges in
different years to see if there has been any grade infla-
tion. Alternatively, if the first query doesn’t reveal any-
thing interesting, the analyst can issue a different query
to explore another dimension of the data.

Online aggregation can deliver acceptably accurate
results almost immediately—even when traditional
techniques take orders of magnitude longer.4,5 With
online aggregation interactivity, users can aggressively
explore data in different directions.

The obvious alternative to online aggregation is to
precompute aggregation results before using the sys-
tem. This is the solution of choice in multidimensional
online analytic processing (MOLAP) tools. MOLAP
is something of a misnomer since multidimensional
processing is done offline in batch mode; the user
merely navigates the stored results online. While this
is a viable solution in some contexts, it is an example
of constrained usage because only the precomputed
queries are interactive. Moreover, these systems have
trouble scaling both because of the storage costs of
precomputed answers and the time required to peri-
odically refresh those answers. 

More recent work combines precomputation with
sampling, storing fixed samples and summaries to pro-
vide small storage footprints and interactive perfor-
mance.6 However, these techniques don’t allow users
to choose the query stopping points or time/accuracy
trade-offs dynamically, and they don’t provide any
control over the relative processing resources devoted
to different groups. The performance benefits of stored
samples can be integrated more flexibly with Control
algorithms by means of caching and prefetching
schemes.

Online enumeration: user-interface widgets
Instead of aggregating records, an online query pro-

cessing system—or even a simple file system—can
pump records to a client tool like a spreadsheet. For
example, a user looking for evidence of discrimina-
tion at a university might request to look at all stu-
dent records, and browse through them looking for
correlations between GPAs and ethnicities of names.

Database systems are commonly criticized for being
much harder to use than desktop applications such as
spreadsheets. Because data analysts are often domain
experts and not database experts, they prefer to use

direct-manipulation interfaces like spreadsheets, in
which the data is (at least partially) visible at all times.
Analysts can learn a good deal about a data set by
browsing a spreadsheet without issuing any complex
queries. For instance, “eyeballing” a spreadsheet to
find clusters of similar-sounding names is easier than
posing a query to find “names of ethnicity X.”

A spreadsheet allows more interactive data analysis
than a traditional DBMS because it provides responses
to fuzzy, imprecise queries. Suppose that a user who is
analyzing student grades asks for the records sorted by
GPA. The scroll bar position acts as a fuzzy range query
on GPA. The user controls the scrollbar position to
examine several regions (say the top few, middle few,
and bottom few students) without explicitly compos-
ing different queries. The main advantage over a tra-
ditional querying interface is that the user doesn’t need
to prespecify a range—panning over a region implic-
itly specifies the range. This is important because the
user doesn’t know in advance what regions contain
valuable information. Contrast this to the SQL Order
By clause and extensions for fetching the top N
answers, which require a priori order specification,
often followed by extensive batch-mode query execu-
tion. The minutes to hours response time of large SQL
queries limits data browsing and exploratory analysis.

On the other hand, spreadsheets are commonly crit-
icized for being unable to handle large data sets grace-
fully. Many spreadsheet behaviors are painfully slow
on large data sets, if they allow large data sets at all.
Microsoft Excel, for example, restricts tables to
65,536 rows or fewer, presumably to ensure interac-
tive behavior. The “speed of thought” response time
required in point-and-click user interfaces makes it
difficult to guarantee acceptable spreadsheet perfor-
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mance on large data sets.
We are investigating the integration of user-inter-

face widgets commonly found in desktop applications
with online processing algorithms—particularly access
methods and reordering techniques. Our goal is to
develop a Control widget toolkit to use in construct-
ing graphical applications that have interactive
response times even over massive data sets. One wid-
get under development is a table (or “sheet”) that
allows interactive scrolling, jumping, prefix search-
ing, and sorting. As one example, when a user presses
a column heading to re-sort the table on that column,
he almost immediately sees a sorted table with the
items read so far, and more items are added as they
are scanned. Actively displayed items receive prefer-
ential treatment: While the rest of the table is sorted
in the background at a slow rate, items in the currently
displayed range are retrieved more quickly, and they
are sorted and displayed as they arrive.

Online data visualization: Clouds
Data visualization is an increasingly active research

area. With interactive data exploration tools, users
can quickly pan and zoom over visual canvases rep-
resenting a data set to observe patterns and trends in
the data.

A data-visualization system must efficiently present
large volumes of information. This involves scanning,
aggregating, and rendering large data sets at point-
and-click speeds. Typically, these visualization systems
don’t draw a new screen until the image has been fully
computed, resulting in batch-style performance for
large data sets. This is particularly egregious for visu-
alization systems that are expressly intended to sup-
port browsing significant amounts of data.

We have developed an online visualization tech-
nique called Clouds that provides interactivity on large
data sets. One obvious solution to batch data visual-
ization is to draw objects online as they are fetched
from the database. However, the intermediate pictures
this produces don’t truly reflect the final image because
they are missing data. Clouds alleviates this problem
by performing enumeration and aggregation simulta-
neously: It renders records as they are fetched, and it

also uses those records to generate an overlay of
shaded regions of color (clouds) that estimate the miss-
ing data. The clouds are not an approximation of the
image, but rather a compensatory shading that
accounts for the difference between the rendered
records and the projected final outcome.

During processing, the user sees the picture improve
much the same way that images transmitted over a net-
work to a Web browser become refined. However, there
is a basic distinction between Clouds and traditional
image coding. Images in a visualization system are con-
structed from ad hoc user requests of the database;
therefore we don’t know what the final image will be
when we begin transmitting data from the database, so
traditional coding schemes don’t directly apply. 

Figure 2 shows an online visualization of US cities
with and without Clouds. Each row in the database is
displayed as one black point on the screen. The shad-
ing in the Clouds version approximates the final den-
sity of areas more closely than the other version.
Clouds can be particularly useful when a user pans or
zooms over the results of an ad hoc query because the
accuracy of what is seen is not as important as the
rough sense of the moving picture. When the user
ceases moving over the visual canvas, there is time to
fetch and render more and more data from the visu-
alized region, causing the clouds to gradually “lift.”

As with user interface widgets, our data visualiza-
tion techniques tie into data delivery, and they bene-
fit directly from improved access methods and
reordering techniques. DBMS-centric visualization
tools need an online query-processing system’s full
power—joins, aggregations, and so on—on the back
end.

Online data mining
Many data-mining algorithms make at least one

complete pass over a database before producing
answers. In addition, most mining algorithms require
a user to tune several parameters that are not
adjustable while the algorithm is running. As a result,
their execution exhibits batch behavior with a long
delay, during which there is no feedback. Recent work
has attempted to add mining primitives to core data-

Figure 2. Partially
completed visualiza-
tion of US cities: (a)
the result without
Clouds, and (b) the
effect of adding
Clouds. The clouds
indicate the density of
cities that have not
yet been plotted.

(a) (b)



base engines.7 This may bring the data-mining speed
closer to the level of native SQL queries, but the batch
behavior is still a basic algorithmic problem.

The much-studied techniques for finding associa-
tion rules are a good example of the difficulty of using
data-mining systems. Before you run standard asso-
ciation rule algorithms, you specify a minimum thresh-
old on the amount of evidence required to produce a
set of items (minsupport) and a minimum threshold
on the correlation between the items in the set (min-
confidence). Although these algorithms can run for
hours before producing association rules, they pro-
vide no intermediate feedback—if you set these thresh-
olds incorrectly, you have to start over. Setting
thresholds too high means that the system returns too
few rules. Setting them too low means that the system
runs even more slowly and returns an overwhelming
amount of information, most of which is useless. In
addition, the analyst can’t use domain knowledge to
prune irrelevant correlations during processing.

The best-known algorithms for association rules
use a sequence of aggregation queries, which could be
adapted to use online query-processing techniques to
present the results of the sequence online. With Carma
(Continuous Association Rule Mining Algorithm), an
alternative association rule algorithm developed in the
Control project,8 you can control the processing by
changing the support threshold dynamically during
the first scan of the transaction sequence. This algo-
rithm also provides continually improving determin-
istic bounds on the support for different itemsets
during the processing. Because Carma often has a
smaller memory footprint than other algorithms, it
frequently produces a final, accurate answer faster
than batch algorithms. Thus, Carma has better inter-
activity, and, in many cases, also excels in overall com-
pletion time.

Most other data-mining algorithms (clustering, clas-
sification, pattern matching) are similarly time-con-
suming, but we believe that online mining techniques
can be developed for these problems. Control tech-
niques tighten loops in the knowledge discovery
process,1 bringing mining algorithms closer in spirit
to data visualization and browsing. Such synergies
between user-driven and automated data-analysis
techniques seem like a promising direction for cross-
pollination between research areas.

NUTS AND BOLTS OF CONTROL
Random data sampling is the fundamental tech-

nique for getting approximate answers to queries.
Previous work on sampling in databases uses confi-
dence intervals that are specified prior to starting the
query processing. The drawback to this approach is
that users have to have sophisticated knowledge of
statistical methods. Moreover, specifying statistical

stopping conditions at the beginning reduces
the execution time, but it doesn’t make the exe-
cution interactive. For example, there is no way
to dynamically control the processing rate for
different groups of records. 

Therefore, with Control systems we continu-
ously fetch new data at random, so that the run-
ning result of a partially completed query is
computed from a random sample. The precision
of the intermediate results continually improves
as we scan more data, and we can decide
dynamically when to stop or change the query. 

Although randomized data access isn’t cru-
cial for enumeration scenarios such as spread-
sheets, it is still beneficial because users prefer
to see a representative sample of the data at any
given time.

In addition to randomly and progressively sampling
from a data set, Control systems require new techniques
for sampling from multiple inputs, reordering data
streams interactively, and estimating graphical results.

Sampling from multiple inputs: ripple joins
SQL data-analysis queries often combine data from

multiple tables, which typically requires relational join
operators (there are several different “flavors” of
joins). A join operator combines information from two
input tables and produces an output table. Each row
in the output table consists of the information of a row
from the first input table combined with the informa-
tion from a row in the second input table. In the sim-
plest case, the information from a pair of rows is
combined and appended to the output if the value in
a specified column of the first row matches the value
in a specified column of the second row. For example,
one table contains rows consisting of name and
address, and another contains rows consisting of name
and item (purchased). These two tables can be joined
via the name columns. In general, a pair of rows par-
ticipates in the join if the column values for the two
rows satisfy a specified logical “join predicate” (which
is often an equality match). Mathematically speaking,
the join of two tables R and S first forms the Cartesian
product of R and S, and then selects from the result
only the row-pairs that satisfy the join predicate.

Unfortunately, the fastest classical join algorithms,
such as Sort-Merge and Hybrid-Hash, are inappro-
priate for online query processing because they scan
a large portion of their input before they start return-
ing records. 

The nested-loops join is the only completely pipelin-
ing classical algorithm. In the outer loop of a nested-
loops join of tables R and S, this algorithm repeatedly
reads a record from R, the outer table. During the
inner loop of the join, the algorithm completely scans
inner table S with the record from R to form the result
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table. Although the nested-loops join is pipelining, it
is typically quite slow unless there is an index to speed
up the inner loop.

In an online aggregation system, a nested-loops join
can return an updated aggregate estimate and confi-
dence interval after every scan of inner table S, but its
performance is typically unacceptable when the inner
table is large (as in decision-support scenarios). Another
problem with a nested-loops join is that it samples more
quickly from the inner table than from the outer table.
Depending on the data values, this sampling-rate dis-
crepancy can result in unnecessarily wide confidence
intervals, as in the error bars in Figure 1. 

We developed the family of ripple join algorithms to
address these online query-processing problems (see
the “Ripple Join Algorithms” sidebar).4 The algo-
rithms, which generalize a number of previous join
algorithms, can start returning rows of the output
immediately upon invocation. The sampling rates for
the input tables are dynamically adjusted to shrink the
confidence intervals as quickly as possible while still
satisfying interactivity requirements.

Ripple join algorithms for enumeration (nonaggre-
gation) queries have benefits similar to sampling: A
ripple join’s running result arguably represents a sub-
set of the final result because it consists of sizeable ran-
dom samples from each input relation.

Preferential data delivery: online reordering
A key aspect of an online query-processing system

is that users perceive data being processed over time.
Thus, an online system should process interesting data
early, so users can get satisfactory results quickly, halt
processing, and move on to their next request. The
online aggregation speed buttons in Figure 1 are one
interface for specifying interest preferences for par-
ticular records. A spreadsheet’s scroll bar is another
interface: Items displayed at the current position are
of greatest interest, and the likelihood of navigation to
other scroll bar positions determines the relative pref-
erence of other items.

To support preferential data delivery, we developed
an online reordering operator that reorders data on
the fly based on user preferences: Interesting items get

processed first, and users can dynamically change their
definition of “interesting” during a query. The map-
ping from user preferences to data delivery rates
depends on the application’s performance goals.6

Given a statement of preferences, the reordering oper-
ator reorders records in a data stream to process inter-
esting items earlier. It aggressively prefetches data from
the source and “juggles” interesting and uninterest-
ing records using a buffer and an auxiliary disk, so
that interesting items are available when the applica-
tion wants them. 

Since our goal is interactivity, reordering must not
involve preprocessing or other overheads that increase
a user’s wait time. Instead, we do a best effort reorder-
ing without slowing down the processing by making
the reordering concurrent with the processing. Figure
3 illustrates our scheme for inserting a reorder oper-
ator into a data flow. The data flow has four stages: 

• produce is a source that generates data items,
• reorder reorders the items according to the con-

sumer’s dynamically changing preferences,
• process is the set of operations applied to the

records, and 
• consume captures user think time, if any. 

Process involves a variety of per-record processing
scenarios: running DBMS operators like joins, ship-
ping data across a slow network, rendering data onto
the screen in data visualization, and so on. Consume
occurs mainly in interactive interfaces such as spread-
sheets or data visualization, in which a user needs
some time to absorb a screenful of information before
moving to another screenful. 

Since all these operations can go on concurrently,
we reorder the items by exploiting the difference in
throughput between the produce stage and the process
or consume stages. For disk-based data sources, pro-
duce can run as fast as the sequential read bandwidth,
whereas process may involve several random I/Os,
which are much slower. While the items sent out so
far are being processed/consumed, reorder can per-
mute more items from produce.6

Online graphical estimation: Clouds
There are two key issues with using Clouds to ac-

count for data that hasn’t yet been read in online data
visualization. First, we must decide what color to use
for the clouds to approximate the missing data.
Second, we need to determine how best to partition
the visualization into regions where we are going to
draw individual clouds.

As we read data from the database, we maintain
statistics so that we can predict the eventual number
of illuminated pixels (the “density”) in a given region
and determine the color of those pixels. We use these

Figure 3. Control
inserts a reordering
operator into a data
flow. The operator
reorders data so that
more interesting data
gets processed first.

index

net

disk

Produce Reorder Process Consume



statistics to choose a cloud color that minimizes the
expected error between the clouded visualization and
the final visualization. We are currently experimenting
with the visual effects of different error metrics such
as mean-squared error.

We build and maintain a hierarchical data structure
(a quad tree) for choosing granularities that partition
the screen into rectangles. For a given region of the
screen, Clouds chooses the granularity that incurs the
least error. Clouds can choose granularities that aggre-
gate in small or large groups, depending on the local
data patterns. On the other hand, since quad-tree
boundaries are strictly square and oriented indepen-
dently from the data, the partition boundaries can
have difficulty mirroring some data patterns such as
diagonally oriented regions. We intend to experiment

with other partitioning techniques such as Voronoi
diagrams or image segmentation techniques used in
computer vision.

CONTROL TODAY
We have prototyped Control algorithms in several

freeware and commercial systems. At IBM, we are
investigating the use of online aggregation techniques
in the DB2 Universal Database. At Berkeley, we have
implemented a number of online query-processing
techniques inside the freely available PostgreSQL
DBMS.4,9 In collaborative effort between Berkeley and
Informix, we have implemented a full suite of online
query-processing algorithms in the Informix Dynamic
Server with Universal Data Option version 9.14. We
have also implemented Clouds in Berkeley’s Tioga
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Ripple Join Algorithms
Ripple join algorithms address online query-pro-

cessing problems involving multiple inputs. In the
simplest version of the two-table ripple join, the algo-
rithm retrieves one previously unseen random tuple
from each of R and S at each sampling step. It then
joins these new tuples with the previously seen tuples
and with each other, and computes an updated aggre-
gate estimator and confidence interval. Thus, the
Cartesian product R × S is “swept out,” as depicted
in Figure A. 

In each matrix in the figure, the R axis represents
tuples of R, the S axis represents tuples of S, each
position (r, s) in each matrix represents a corre-
sponding tuple in R × S, and each “×” inside the
matrix corresponds to an element of R × S that has
been seen so far. In the figure, the tuples in each of R
and S are displayed in the order provided by the
access methods; this order is assumed to be random.

The “square” version of this ripple join samples
from R and S at the same rate. But sampling the
“more variable” relation at a higher rate can be ben-
eficial because it provides the narrowest possible con-
fidence intervals for a given updating rate. Such
sampling leads to a “rectangular” version of the rip-

ple join. The optimal sampling rates depend on all
of the data in the input tables, and therefore can’t be
determined in advance; the algorithm adjusts the
sampling rates dynamically during the join based on
the data seen so far. 

Variants of the basic ripple join algorithm use an
assortment of techniques to reduce disk accesses and
to speed up the process of finding all of the rows in
a table that join with a given row from the other
table. In a block ripple join, rows are retrieved from
disk in large blocks to reduce I/O costs. If, say, Table
S has an index on the join-column, then the rows of
S that join with a given row of R can quickly be
found by searching the index; this procedure leads
to the index ripple join. Finally, hash ripple join
builds a hash table for each input table from the rows
seen so far by using a hash function (the same for
each table) to assign each row to a small “hash
bucket” based on the join-column value of the row.
(In this setting, a hash function is simply a mapping
from a join-column value to a bucket number.) For
a newly retrieved row r from, say, Table R, the hash
function is then applied to the row to locate the hash
bucket of S that (by construction) contains all rows
of S retrieved so far that join with r.
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Figure A. Elements of R × S after n steps of a ripple join.
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Datasplash visualization system. Our online associa-
tion rules mining algorithm has been developed as a
Java application.8 We have developed a prototype of
a scalable spreadsheet for data analysis and transfor-
mation that addresses some of the user-interaction
issues in Control. Further information on this pro-
ject is available on the Web at http://control.cs.
berkeley.edu.

LOOKING AHEAD
The Control group’s focus to date has been on using

continuous sampling and online data reordering to
make data analysis interactive. We have just begun to
study user interface issues in online data analysis.
Much work remains to be done to understand and
construct usable applications, especially for online
enumeration and visualization.

In the systems arena, we are extending our work to
parallel algorithmic and statistical contexts. For exam-
ple, parallel ripple joins involve stratified sampling
techniques, which affect online aggregation estima-
tors and confidence intervals. We are investigating
online query-processing optimization issues, and we
believe that continuous runtime reoptimization will
be especially beneficial in this context. We are also
investigating techniques for handling subqueries.
Many typical decision-support queries contain sub-
queries, for example, TPC-D benchmark queries, and
some of them can’t be rewritten away. Finally, we are
investigating middleware approaches to Control that
would not require modifying the underlying DBMSs.

W e are interested in the way interactive tech-
niques change the data-analysis and knowledge
discovery process. More interactive long-run-

ning operations blur the distinction between “auto-
mated” or “intelligent” techniques such as data mining
and user-driven techniques such as data visualization
and OLAP. This goes beyond the obvious issues of
faster algorithms to suggest more natural human-com-
puter interactions and synergies for data analysis. ❖
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