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Abstract

Aggregation in traditional database systems is performed in
batch mode: a query is submitted, the system processes a
large volume of data over a long period of time, and, even-
tually, the �nal answer is returned. This archaic approach is
frustrating to users and has been abandoned in most other
areas of computing. In this paper we propose a new online

aggregation interface that permits users to both observe the
progress of their aggregation queries and control execution
on the 
y. After outlining usability and performance re-
quirements for a system supporting online aggregation, we
present a suite of techniques that extend a database sys-
tem to meet these requirements. These include methods for
returning the output in random order, for providing con-
trol over the relative rate at which di�erent aggregates are
computed, and for computing running con�dence intervals.
Finally, we report on an initial implementation of online ag-
gregation in postgres.

1 Introduction

Aggregation is an increasingly important operation in to-
day's relational database management systems (dbms's). As
data sets grow larger and both users and user interfaces be-
come more sophisticated, there is a growing emphasis on
extracting not just speci�c data items, but also general char-
acterizations of large subsets of the data. Users want this
aggregate information right away, even though producing it
may involve accessing and condensing enormous amounts of
information.

Unfortunately, aggregation processing in today's data-
base systems closely resembles the batch processing of the
1960's. When users submit an aggregation query to the
system, they are forced to wait without feedback while the
system churns through millions of records or more. Only
after a signi�cant period of time does the system respond
with the (usually small) �nal answer. A particularly frus-
trating aspect of this problem is that aggregation queries
are typically used to get a \rough picture" of a large body
of information, and yet they are computed with painstak-
ing precision, even in situations where an acceptably precise
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Figure 1: An online aggregation interface for Query 1.

approximation might be available very quickly.
We propose changing the interface to aggregation pro-

cessing and, by extension, changing aggregation processing
itself. The idea is to perform aggregation online in order to
allow users both to observe the progress of their queries and
to control execution on the 
y. In this paper we present mo-
tivation, methodology, and some initial results on enhancing
a relational dbms to support online aggregation. This en-
hancement requires changes not only to the user interface,
but also to the techniques used for query optimization and
execution. We also show how both new and existing sta-
tistical estimation techniques can be incorporated into the
system to help the user assess the proximity of the run-
ning aggregate to the �nal result; the proposed interface
makes these techniques accessible even to users with little
or no statistical background. As discussed below, the on-
line aggregation interface described here goes well beyond
merely providing a platform for such statistical estimation
techniques, and permits an interactive approach to both for-
mal and informal data exploration and analysis.

1.1 A Motivating Example

As a very simple example, consider the query that �nds the
average grade in a course:

Query 1: AVG

SELECT AVG(final_grade) ------------

FROM grades | 2.631046 |

WHERE course_name = 'CS186'; ------------

If there is no index on the course_name attribute, this query
scans the entire grades table before returning the answer
shown above.

As an alternative, consider the user interface in Figure 1,
which could appear immediately after the user submits the
query. This interface can begin to display output as soon as
the system retrieves the �rst tuple that satis�es the WHERE

clause. The output is updated regularly, at a speed that is
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comfortable to the human observer. The % done and status
bar display give an indication of the amount of processing
remaining before completion. The AVG �eld shows the run-
ning aggregate, i.e., an estimate of the �nal result based
on all the records retrieved so far. The Confidence and
Interval �elds give a probabilistic estimate of the proxim-
ity of the current running aggregate to the �nal result |
according to Figure 1, for example, the current average is
within �:0652539 of the �nal result with 95% probability.
The interval 2:6336 � 0:0652539 is called a running con�-

dence interval . As soon as the query completes, this statis-
tical information becomes unnecessary and need no longer
be displayed.

This interface is signi�cantly more useful than the \blink-
ing cursor" or \wristwatch icon" traditionally presented to
users during aggregation processing. It presents information
at all times, and more importantly it gives the user control
over processing. The user is allowed to trade accuracy for
time, and to do so on the 
y, based on changing or unquan-
ti�able human factors including time constraints, accuracy
needs, and priority of other tasks. Since the user sees the
ongoing processing, there is no need to specify these factors
in advance.

Obviously this example is quite simple; more complex
examples are presented below. Even in this very simple ex-
ample, however, the user is given considerably more control
over the system than was previously available. In the rest of
the paper we highlight additional ways that a user can con-
trol aggregation (Sections 1.2 and 2). We discuss a number
of system issues that need to be addressed in order to best
support this sort of control (Section 3), provide formulas for
computing Confidence and Interval parameters (Section 4
and the Appendix), and present results from our initial im-
plementation of online aggregation in postgres (Section 5).

1.2 Online Aggregation and Statistical Estimation

Assuming that records are retrieved in random order, a run-
ning aggregate can be viewed as a statistical estimator of
the �nal query result. The proximity of the running ag-
gregate to the �nal result can therefore be expressed, for
example, in terms of a running con�dence interval as illus-
trated above. The width of such a con�dence interval serves
as a measure of the precision of the estimator. Previous
work [HOT88, HNSS96, LNSS93] has been concerned with
methods for producing a con�dence interval with a width
that is speci�ed prior to the start of query processing (e.g.
\get within 2% of the actual answer with 95% probability").
The underlying idea in most of these methods is to e�ectively
maintain a running con�dence interval (not displayed to the
user) and stop sampling as soon as the length of this inter-
val is su�ciently small. Hou, et al. [HOT89] consider the
related problem of producing a con�dence interval of mini-
mal length, given a real-time stopping condition (e.g. \run
for 5 minutes only").

A key strength of an online aggregation interface is that
con�dence intervals can be exploited without requiring a
priori speci�cation of stopping conditions. Though this
may seem a simple point, consider the case of an aggregation
query with a GROUP BY clause and six groups in its output,
as in Figure 2. In an online aggregation system, the user can
be presented with six outputs and six \Stop-sign" buttons.
In a traditional dbms, the user does not know the output
groups a priori, and hence cannot control the query in a
group-by-group fashion.

Because the online aggregation interface is natural and

Figure 2: An online aggregation interface with groups.

easy to use, con�dence-interval methodology is more accessi-
ble to non-statistical users than in a traditional dbms. Busy
end-users are likely to be quite comfortable with the online
aggregation \Stop-sign" buttons, since such interfaces are
familiar from popular tools like web browsers. End-users
are certainly less likely to be comfortable specifying statis-
tical stopping conditions. They are also unlikely to want
to specify explicit real-time stopping conditions, given that
constraints in a real-world scenario are 
uid | often another
minute or two of processing \suddenly" becomes worthwhile
at a previously imposed deadline. The familiarity and natu-
ralness of the online aggregation interface cannot be overem-
phasized. It has been shown in the User Interface literature
that status bars alone improve a user's perception of the
speed of a system [Mye85]. The combination of these sta-
tus bars with both running estimates of the �nal result and
online processing controls has the potential to signi�cantly
increase user satisfaction.

The increase in power of the online aggregation interface
over traditional interfaces calls for commensurately more
powerful statistical estimation techniques. Some of the pre-
vious methods (such as \double sampling" [HOD91]) for
computing con�dence intervals assume that records are sam-
pled using techniques that are not appropriate in the setting
of online aggregation. Previous work also has focused pri-
marily on COUNT queries, and a number of the con�dence-
interval formulas that have been proposed are based on
Chebyshev's inequality. We provide con�dence-interval for-
mulas (see Section 4 and the Appendix) that are applicable
to a much wider variety of aggregation queries. The for-
mulas for \conservative" con�dence intervals are based on
recent extensions to Hoe�ding's inequality [Hoe63] and lead
to conservative con�dence intervals that are typically much
narrower than corresponding intervals based on Chebyshev's
inequality.

Although the above discussion has focused on issues per-
tinent to statistical estimation, it is important to remem-
ber that much of the bene�t derived from online aggre-
gation is not statistical in nature. The ongoing feedback
provided by an online aggregation interface allows intuitive,
non-statistical insight into the progress of a query. It also
permits ongoing non-textual, non-statistical representations
of a query's output. One common example of this is the
appearance of data on a map or graph as they are retrieved
from the database.
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1.3 Other Related Work

An interesting new class of systems is developing to support
so-called On-Line Analytical Processing (OLAP) [CCS93].
Though none of these systems support online aggregation
to the extent proposed here, one system | Red Brick |
supports running count, average, and sum functions. One
of the features of OLAP systems is their support for super-
aggregation (\roll-up"), sub-aggregation (\drill-down") and
cross-tabulation. The CUBE operator [GBLP96] has been
proposed as an addition to SQL to allow standard relational
systems to support these kinds of aggregation. Comput-
ing CUBE queries typically requires signi�cant processing
[AAD+96], and batch-style aggregation systems will be very
unpleasant to use for these queries. Moreover, it is likely
that accurate computation of the entire data cube will often
be unnecessary; online approximations of the various aggre-
gates are likely to su�ce in numerous situations.

Other recent results on relational aggregation have fo-
cused on new transformations for optimizing queries with
aggregation [CS96, GHQ95, YL95, SPL96, SHP+96]. The
techniques in these papers allow query optimizers more lat-
itude in reordering operators in a plan. They are therefore
bene�cial to any system supporting aggregation, including
online aggregation systems.

There has been some initial work on \fast-�rst" query
processing, which attempts to quickly return the �rst few
tuples of a query. Antoshenkov and Ziauddin report on the
Oracle Rdb (formerly DEC Rdb/VMS) system, which ad-
dresses the issues of fast-�rst processing by running mul-
tiple query plans simultaneously; this intriguing architec-
ture requires some unusual query processing support [AZ96].
Bayardo and Miranker propose optimization and execution
techniques for fast-�rst processing using nested-loops joins
[BM96]. Much of this work is potentially applicable to online
aggregation. The performance goals of online aggregation
are somewhat more complex than those of fast-�rst queries,
as we describe in Section 2.

A di�erent but related notion of online query processing
was implemented in a system called approximate [VL93].
This system de�nes an approximate relational algebra which
it uses to process standard relational queries in an iteratively
re�ned manner. If a query is stopped before completion, a
superset of the exact answer is returned in a combined ex-
tensional/intensional format. This model is di�erent from
the type of data browsing we address with online aggrega-
tion: it is dependent on carefully designed metadata and
does not address aggregation or statistical assessments of
precision.

2 Usability and Performance Goals

In this section, we outline usability and performance goals
that must be considered in the design of a system for online
aggregation. These goals are di�erent than those in either
a traditional or real-time dbms. In subsequent sections, we
describe how these goals are met in our initial implementa-
tion.

2.1 Usability Goals

Continuous Observation: As indicated above, statistical,
graphical, and other intuitive interfaces should be presented
to allow users to observe the processing, and get a sense of
the current level of precision. The set of interfaces must be
extensible, so that an appropriate interface can be presented
for each aggregate function, or combination of functions.

Figure 3: A speed-controllable multi-group online aggrega-
tion interface.

A good Application Programming Interface (api) must be
provided to facilitate this.

Control of Time/Precision: Users should be able to
terminate processing at any time, thereby controlling the
tradeo� between time and precision. Moreover, this con-
trol should be o�ered at a relatively �ne granularity. As an
example, consider the following query:

Query 2:

SELECT AVG(final_grade) FROM grades

GROUP BY major;

The output of this query in an online aggregation system can
be a set of interfaces, one per output group, as in Figure 2.
The user should be able to terminate processing of each
group individually. Such precise control is permitted by the
interface in Figure 2.

Control of Fairness/Partiality: Users should be able
to control the relative rate at which di�erent running aggre-
gates are updated. When aggregates are computed simul-
taneously for more than one group (as in Query 2 above),
and each group is equally important, the user may want to
ensure that either (i) the running aggregates are all updated
at the same rate or (ii) the widths of the running con�dence
intervals all decrease at the same rate. (In the latter case,
courses with higher variability among grades are updated
more frequently than courses with lower variability.) Ide-
ally, of course, the user would not like to pay an overall
performance penalty for this fairness. In many cases it may
be bene�cial to extend the interface so that users can dy-
namically control the rate at which the running aggregate
for each group is updated relative to the others. Such an
extension allows users to express partiality in favor of some
groups over others. An example of such an interface appears
in Figure 3.

2.2 Performance Goals

Minimum Time to Accuracy: In online aggregation, a
key performance metric is the time required to produce a
useful estimate of the �nal answer. The de�nition of a \use-
ful" answer depends, of course, upon the user and the sit-
uation. As in traditional systems, some level of accuracy
must be reached for an answer to be useful. As in real-time
systems, an answer that is a second too late may be entirely
useless. Unlike either traditional or real-time systems, some
answer is always available, and therefore the de�nition of
\useful" can be based on both kinds of stopping conditions
| statistical and real-time | as well as on dynamic and
subjective user judgments.
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Minimum Time to Completion: It is desirable to
minimize the time required to produce the �nal answer,
though this goal is secondary to the performance goal given
above. We conjecture that, for large queries, users of an
online aggregation typically will terminate processing long
before the �nal answer is produced.

Pacing: The running aggregates should be updated at
a regular rate, to guarantee a smooth and continuously im-
proving display. The output rate need not be as regular as
that of a video system, for instance, but signi�cant updates
should be available often enough to prevent frustration for
the user, without being so frequent that they overburden
the user or user interface.

3 Building a System for Online Aggregation

We have developed an initial prototype of our ideas in the
postgres dbms. In this section we describe two approaches
we followed in trying to add online aggregation to postgres.
The �rst approach was trivial to implement, but su�ered
from serious de�ciencies in both usability and performance.
The second approach required signi�cant modi�cations to
postgres internals, but met our goals e�ectively.

3.1 A Naive Approach

Since postgres already supports arbitrary user-de�ned out-
put functions, it is possible to use it without modi�cation to
produce simple running aggregates like those in Red Brick.
Consider Query 3, which requests the average of all grades:

Query 3:

SELECT running_avg(final_grade),

running_confidence(final_grade),

running_interval(final_grade)

FROM grades;

In postgres, we can write a C function running avg that
returns a 
oat by computing the current average after each
tuple. We can also write functions running confidence

and running interval, based on the statistical results we
present in Section 4. Note that the running * functions
are not registered as aggregate functions with postgres,
but rather as standard user-de�ned functions. As a result,
postgres returns running * values for every tuple that sat-
is�es the WHERE clause. In Section 5, we present performance
results demonstrating the prohibitive costs of handling all
these tuples.

postgres's extensibility features make it convenient for
supporting simple running aggregates such as this. Unfortu-
nately, postgres is less useful for more complicated aggre-
gates: since our running functions are not in fact postgres
aggregates, they cannot be used with an SQL GROUP BY

clause. A number of other performance and functionality
problems arise in even the most forward-looking of today's
database systems, because they are all based on the tra-
ditional performance goal of minimizing time to a complete
answer. As we present our more detailed approach, it should
be clear that it goes much further in meeting our perfor-
mance and usability goals than this naive solution.

3.2 Modifying a DBMS to Support Online Aggregation

Online aggregation should not be implemented as a user-
level addition to a traditional dbms. In this section, we
describe modi�cations to a database engine to support on-
line aggregation. We have implemented the bulk of of these

techniques in postgres, and present some performance re-
sults in Section 5.

3.2.1 Random Access to Data

Running aggregates are computed correctly regardless of the
order in which records are accessed. However, statistically
meaningful estimates of the precision of running aggregates
are available only if records are retrieved in random order.
Practically speaking, this means that an online aggregation
system should avoid access methods in which the attribute
values of a tuple a�ect the order in which the tuple is re-
trieved. This can be guaranteed in a number of ways:

1. Heap Scans: In traditional Heap File access meth-
ods, records are stored in an unspeci�ed order, so sim-
ple heap scans can be e�ective for online aggregation.
It should be noted, however, that the order of a heap
�le often does re
ect some logical order, based on ei-
ther the insertion order or some explicit clustering. If
this order is correlated with the values of some at-
tributes of the records (as may be the case after a bulk
load, or for clustered heap �les), an online aggregation
system should note that fact in the system statistics,
so that online aggregation queries over these attributes
can choose an alternative access method.

2. Index Scans: Scanning an index returns tuples ei-
ther in order based on some attributes (e.g. in a B+-
tree index), or in groups based on some attributes
(e.g. in Hash or multi-dimensional indices). Both of
these techniques are inappropriate for online aggrega-
tion queries over the indexed attributes. For example,
if a column contains 10,000 copies of the value 0, and
10,000 copies of the value 100, an ordered or grouped
access to the tuples will return wildly skewed online es-
timates for the average of this column. However, if the
attributes that are indexed are not the same as those
being aggregated in the query, an index scan should
produce an appropriately random access to the values
in the attributes that are being aggregated, assuming
no correlation between attributes.

3. Sampling from Indices: Olken presents techniques
for pseudo-random sampling from various index struc-
tures [Olk93]. These techniques are ideal for producing
meaningful con�dence intervals. On the other hand,
they can be less e�cient than heap scans or even stan-
dard index scans, since they require repeated probing
of random index buckets, and therefore defeat opti-
mizations like clustering and prefetching.

Heap scans are often the method of choice for large ag-
gregation queries. One of the other access methods may be
more appropriate, however, when the heap �le is ordered on
the aggregation attributes or when it is crucial to have sta-
tistically valid running con�dence intervals. Our implemen-
tation in postgres supports heap scans and index scans;
we do not currently support a sampling access method.

3.2.2 Fair, Non-Blocking GROUP BY and DISTINCT

An online aggregation system should begin returning an-
swers as soon as possible. Moreover, if aggregates for mul-
tiple groups are being displayed simultaneously, it is often
important that the groups receive updates in a fair manner.
A traditional technique for grouping is to sort the input re-
lation by the aggregation �elds, and then collect the groups
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by scanning the output of the sort. This presents two prob-
lems. First, sorting is a blocking algorithm: no outputs can
be produced until the entire input has been processed into
sorted runs, which can take considerable time. Second, the
results for groups are computed in their entirety one at a
time: the aggregate for the �rst group is computed to com-
pletion before the second group is considered, and so on.
Thus sort-based grouping algorithms are inappropriate for
online aggregation.

An alternative is to hash the input relation on its group-
ing columns. Hashing provides a non-blocking approach to
grouping: as soon as a tuple is read from the input, an
updated estimate of the aggregate for its group can be pro-
duced. Moreover, groups at the output can be updated as
often as one of their constituent records is read from the
input. On the other hand, a drawback of hashing is that
it does not scale gracefully with the number of grouping
values | when the hash table exceeds the size of its as-
sociated bu�er space, the hashing algorithm will begin to
thrash. This problem is alleviated by using unary Hybrid
Hashing [Bra84]. It may be expected that the number of
distinct groups in a query should be relatively small, and
hence naive hashing may be acceptable in many cases. A
recent optimization of unary Hybrid Hashing called Hybrid
Cache [HN96] guarantees performance that is equivalent to
naive hashing for the cases where the hash table �ts in mem-
ory, and scales gracefully when the hash table grows too
large.

SQL supports aggregates of the form aggregate(DISTINCT
columns). For such aggregates, the system must remove
duplicates from the aggregation columns before computing
the aggregate. Grouping and duplicate elimination are very
similar, and both can be accomplished via either sorting or
hashing. As with grouping, duplicates should be eliminated
via hashing in an online aggregation system. In this scenario
it is not unusual for the hash table to grow quite large, and
techniques like Hybrid Cache can prove very important.

The original version of postgres used sorting to remove
duplicates and form groups, so we modi�ed it to do naive
hashing for these operations. We plan an implementation of
Hybrid Cache in our next online aggregation system.

3.2.3 Index Striding

Even with hash-based grouping, updates to a particular
group will be available only as often as constituent records
appear in the input of the grouping operator. Given a ran-
dom delivery of tuples at the input, updates for groups with
few members will be very infrequent. To prevent this prob-
lem, it would be desirable to read tuples from the input in a
round-robin fashion | that is, to provide random delivery
of values within each group, but to choose from the groups
in order (a tuple from Group 1, a tuple from Group 2, a
tuple from Group 3, and so on). To support equal-width
con�dence intervals or partiality constraints, it may be de-
sirable to use a weighted round-robin scheme that fetches
from some groups more often than others.

We support this behavior with a technique called index

striding. Given a B-tree index on the grouping columns,1 on
the �rst request for a tuple we open a scan on the leftmost
edge of the index, where we �nd a key value k1. We assign
this scan a search key (or \SARG" [SAC+79]) of the form
[= k1]. After fetching the �rst tuple with key value k1, on
a subsequent request for a tuple we open a second index

1Index striding is naturally applicable to other types of indices as
well, but we omit discussion here due to space constraints.

scan with search key [> k1], in order to quickly �nd the
next group in the table. When we �nd this value, k2, we
change the second scan's search key to be [= k2], and return
the tuple that was found. We repeat this procedure for
subsequent requests until we have a value kn such that a
search key [> kn] returns no tuples. At this point, we satisfy
requests for tuples by fetching from the scans [= k1]; : : : ;
[= kn] in a (possibly weighted) round-robin fashion.

With appropriate bu�ering, striding any index is at least
as e�cient as scanning a relation via an unclustered index
| each tuple of the relation should be fetched exactly once,
though each fetch may require a random I/O. This perfor-
mance is improved if either (i) the index is the primary ac-
cess method for the relation, (ii) the relation is clustered by
the grouping columns, or (iii) the index keys contain both
the grouping and aggregation columns, with the grouping
columns as a pre�x. In all of these cases, the performance
of the index stride will be as good as that of scanning a rela-
tion via a clustered secondary index: no block of the relation
will be fetched more than once.

An important advantage of index striding is that it allows
control over delivery of tuples across groups. In particular,
it can assure that each group is updated at the output at
an appropriate rate based on default settings or online user
modi�cations. A �nal advantage is that when a user requests
that a group be stopped, the other groups will begin to
deliver tuples more quickly than they did before.

We extended postgres to support index striding with
weighted round-robin scheduling. Using this technique, we
support the \Stop-sign" and \Speed" buttons of Figure 3.
Index striding supports many of our usability and perfor-
mance goals.

3.2.4 Non-Blocking Join Algorithms

In order to guarantee reasonably interactive display of online
aggregations, it is important to avoid algorithms that block
during query processing. In this section we present an initial
discussion of standard join algorithms with regard to their
blocking properties. We plan to do a quantitative evaluation
of these tradeo�s in future work, but this initial analysis
already points out some important trends.

Sort-merge join is clearly unacceptable for online aggre-
gation queries, since sorting is a blocking operation. Merge
join (without sort) is acceptable in most cases. Complica-
tions arise, however, because of the sorted output of a merge
join. As with access methods that provide tuples in sorted
order, join methods that generate sorted output can cause
problems in terms of statistics, and also in terms of fairness
in grouping. So merge join is useful in some cases and not
others, and must be chosen with care.

Hybrid hash join [DKO+84] blocks for the time required
to hash the inner relation. This may be acceptable if the in-
ner relation is small, and particularly if it �ts into the bu�er
space available. The Pipeline hash join technique of [WA91]
is a non-blocking hash join that treats its inner and outer
relations symmetrically. Pipeline hash join is typically less
e�cient (in terms of completion time) than hybrid hash join
since it shares bu�ers among both the inner outer relations.
However, it may be appropriate for online aggregation if
both relations in the join are large.

The \safest" join algorithm for online aggregation is nest-
ed-loops join, particularly if there is an index on the inner re-
lation. It is non-blocking, and produces outputs in the same
order as the outermost relation. There are recent results on
optimizing a pipeline of nested-loops joins to improve the
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speed of access to the �rst few tuples [BM96]. However,
with a large, unindexed inner relation, the rate of produc-
tion of nested-loops join may be so slow (albeit steady), that
it will be unacceptable even for online aggregation.

Clearly there are a number of choices for join strategies
that satisfy the goals of online aggregation in certain situa-
tions. As in traditional query processing, an optimizer must
be used to choose between these strategies, and we discuss
this issue next.

3.2.5 Optimization

A thorough understanding of query optimization for online
aggregation will require (i) a quantitative speci�cation of
performance goals for online processing, and (ii) an accu-
rate cost model for relational operators within that frame-
work. We consider our work to date to be too preliminary
for such speci�c analyses. However, some basic observations
can vastly improve the quality of plans produced for online
aggregation, and we present these points here.

First, sorting can be avoided entirely in an online aggre-
gation system, unless explicitly requested by the user. In
scenarios where sorting is quick (e.g. for small relations),
alternative algorithms based on hashing or iteration should
be comparably fast anyway.

Second, the notion of \interesting orders" [SAC+79] in
a traditional optimizer must be extended for online aggre-
gation. As shown in Section 3.2.4, it is undesirable to pro-
duce results that are ordered on the aggregation or group-
ing columns. Hence certain operations (e.g. scans and joins)
should be noted to have \interestingly bad" orders, and may
often be pruned from the space of possible sub-solutions dur-
ing optimization.

Third, blocking sub-operations (e.g. processing the inner
relation of a Hybrid Hash Join) should have costs that are
disproportionate to their processing time. The cost model
for an operation in an online aggregation system should be
broken into two parts: time td spent in blocking operations
(\dead time" from the user's perspective), and time to spent
producing tuples for the output (\output time"). An appro-
priate cost function for online aggregation should have the
form f(to) + g(td), where f is a linear function, and g is
super-linear (e.g. exponential). This will \tax" operations
with large amounts of dead time, and may naturally prune
inappropriate plans like those that include sorting.

Fourth, some preference should be given to plans that
maximize user control, such as those that use index striding.
To guarantee this, there must be a way to characterize the
controllability features of an operator and weigh the bene�t
of these features against raw performance considerations.

Finally, tradeo�s need to be evaluated between the out-
put rate of a query and its time to completion. In many
cases, the best \batch" plan (e.g. a merge join on sorted
relations based on the aggregation attributes) may be so
much faster than the best non-blocking plan (e.g. a nested
loops join on these relations) that the \batch" behavior may
be preferable even in an online environment. The point at
which this tradeo� happens is clearly dependent on a user's
desires. An interesting direction that we intend to explore
in future work is to devise natural controls that allow rel-
atively naive users to set their preferences in this regard.
Running multiple versions of a query as in Rdb [AZ96] is a
natural way to make this decision on the 
y, at the expense
of wasted computing resources.

3.2.6 Aggregate Functions

In order to produce running aggregates, the standard set
of aggregate functions must be extended. First, aggregate
functions must be written that provide running estimates.
For single-table queries, running computation of SUM, COUNT,
and AVG aggregates is straightforward, and running compu-
tation of VAR and STD DEV aggregates can be accomplished
using numerically stable algorithms as in Chan, Golub, and
LeVeque [CGL83]. In addition, new aggregate functions
must be de�ned that return running con�dence intervals
for these estimates. We provide formulae for a variety of
such con�dence intervals in Section 4 and in the Appendix.
Extensible systems like postgres make implementation of
these database extensions relatively easy, since new aggre-
gate functions can be added by users. Finally, the query ex-
ecutor must be modi�ed to provide running aggregate values
as needed for display, and an api must be provided to con-
trol the rate at which the values are provided. We discuss
this issue next.

3.2.7 API

The traditional SQL cursor interface is not su�ciently ro-
bust to support the kinds of feedback we wish to pass from
the user interface to the database server. In an extensible
dbms like postgres, one can circumvent this problem by
submitting additional queries, which call user-de�ned func-
tions, which in turn modify the processing in the dbms. We
introduced four such functions in postgres. The �rst three
are stopGroup, speedUpGroup, and slowDownGroup. Each
takes as arguments a cursor and a group value, and is han-
dled accordingly by the backend to stop, speed up, or slow
down processing on a group within a query (e.g. by chang-
ing the round-robin schedule in an index stride). The fourth
function, setSkipFactor, takes a cursor name and an inte-
ger as arguments, and sets a skip factor for the cursor. If
the skip factor is set to k, then the dbms only ships an up-
date to the user interface after k input tuples have been
processed by the aggregate. This update frequency can
a�ect both the readability and the performance of the user
interface, particularly if the user interface is running on a
di�erent machine than the dbms. Our full user interface
for postgres includes a control for the skip factor, and is
shown in Figure 4. All the functionality of this interface has
been implemented in postgres. The window of the inter-
face grows dynamically as new groups are discovered during
processing.

We emphasize that this user interface is merely an ex-
ample of what can be done with an appropriate system and
api. Our solution of using queries with user-de�ned func-
tions was a (rather inelegant) workaround for the insu�cient
api provided by SQL. A subsidiary goal of this work is to
push for extensions to the SQL api to support interfaces for
online control of queries.

4 Running Con�dence Intervals

The precision of a running aggregate can be indicated by
means of an associated running con�dence interval. Sup-
pose that n records have been retrieved in random order
and a running aggregate Yn has been computed. For a pre-
speci�ed con�dence parameter p 2 (0; 1), the idea, as shown
in the examples above, is to display a precision parameter �n
such that Yn is within ��n of the �nal answer � with prob-
ability approximately equal to p. Equivalently, the random

6



Figure 4: The full postgres online aggregation interface.

interval [Yn��n; Yn+�n] contains � with probability approxi-
mately equal to p. (In the previous examples of the interface,
the con�dence parameter p is labeled Confidence and the
precision parameter �n is labeled Interval.) A large value
of �n serves to warn the user that the records seen so far may
not be su�ciently representative of the entire database, and
hence the current estimate of the query result may be far
from the �nal result. Moreover, as discussed above, the user
can terminate processing of the aggregation query when �n
decreases to a desired level.

A running con�dence interval is statistically meaningful
provided that records are retrieved in random order. Under
this assumption, we can view the records retrieved so far
as a random sample drawn uniformly without replacement
from the set of all records in the database.

There are several types of running con�dence intervals
that can be constructed from n retrieved records:

(i) Conservative con�dence intervals contain the �nal an-
swer � with a probability that is guaranteed to be
greater than or equal to p. Such intervals can be
based on Hoe�ding's inequality [Hoe63] or recent ex-
tensions [Haa96a] of this inequality and are valid for
all n � 1.

(ii) Large-sample con�dence intervals contain the �nal an-
swer � with a probability approximately equal to p and
are based upon central limit theorems (clt's). Such in-
tervals are appropriate when n is small enough so that
the records retrieved so far can be viewed as a sample
drawn e�ectively with replacement but large enough
so that approximations based on clt's are accurate.
When n is both small enough and large enough, we
say that the large-sample assumption holds. Such in-
tervals must be used judiciously: the true probability
that a large-sample con�dence interval contains � can
be less (sometimes much less) than the nominal prob-
ability p. The advantage of large-sample con�dence
intervals is that, when applicable, they are typically
much shorter than conservative con�dence intervals.

(iii) Deterministic con�dence intervals contain � with prob-
ability 1. Such intervals are typically useful only when
n is very large. Unlike the other types of con�dence
interval, a deterministic con�dence interval is typically
of the form [Yn � �n; Yn + �n] with �n 6= �n.

In practice, it may be desirable to dynamically adjust the
type of running con�dence interval that is displayed based
on the current value of n.

We illustrate the construction of conservative and large-
sample con�dence intervals with a simple example. (We
conjecture that users typically will terminate an aggregation
query before enough records have been retrieved to form a
useful deterministic con�dence interval; we therefore do not
discuss such intervals further.) Let R be a relation contain-
ing m tuples, denoted t1; t2; : : : ; tm, and consider a query of
the form

SELECT AVG(expression) FROM R;

where expression is an arithmetic expression involving the
attributes of R. A typical instance of such a query might
look like

SELECT AVG(price * quantity) FROM inventory;

Denote by v(i) (1 � i � m) the value of expression when
applied to tuple ti. Let Li be the (random) index of the
ith tuple retrieved from R; that is, the ith tuple retrieved
from R is tuple tLi . We assume that all retrieval orders are
equally likely, so that P fLi = 1 g = P fLi = 2 g = � � � =
P fLi =m g = 1=m for each i. After n tuples have been
retrieved (where 1 � n � m), the running aggregate for the

above AVG query is given by Y n = (1=n)
Pn

i=1
v(Li).

To obtain a conservative con�dence interval, we require
that there exist constants a and b, known a priori , such that
a � v(i) � b for 1 � i � m; such constants typically can
be obtained from the database system catalog. Denote by �
the �nal answer to the query, that is, � = (1=m)

Pm

i=1 v(i).
Hoe�ding's inequality [Hoe63] asserts that

P
�
jY n � �j � �

	
� 1� 2e�2n�

2=(b�a)2

for � > 0. Setting the right side of the above inequality equal
to p and solving for �, we see that with probability � p the
running average Y n is within ��n of the �nal answer �,
where

�n = (b� a)

�
1

2n
ln
� 2

1� p

��1=2

: (1)

To obtain a large-sample con�dence interval, we do not
require a priori bounds on the function v, but rather that the
large-sample assumption hold. Since n is \small enough,"
the random indices fLi : 1 � i � n g can be viewed as a
sequence of independent and identically distributed (i.i.d.)

random variables. Set �2 = (1=m)
Pm

i=1

�
v(i)��

�2
. Since n

is \large enough," it follows from the standard clt for i.i.d.
random variables that

p
n(Y n��)=� is distributed approx-

imately as a standardized (mean 0, variance 1) normal ran-
dom variable. By a standard \continuous mapping" argu-
ment [Bil86, Section 25], this assertion also holds when �2 is
replaced by the estimator Tn;2(v) = (n�1)�1

Pn

i=1

�
v(Li)�

Y n

�2
. It follows that

P
�
jY n � �j � �

	
= P

( �����
p
n(Y n � �)

T
1=2

n;2 (v)

����� � �
p
n

T
1=2

n;2 (v)

)

� 2�

 
�
p
n

T
1=2

n;2 (v)

!
� 1

(2)

for � > 0, where � is the cumulative distribution function
of a standardized normal random variable. Let zp be the
(p+ 1)=2 quantile of this distribution, so that �(zp) = (p+
1)=2. Then, setting the rightmost term in (2) equal to p and
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solving for �, we see that a large-sample (100p)% con�dence
interval is obtained by choosing

�n =

�
z2pTn;2(v)

n

�1=2

: (3)

The above example is relatively simple and utilizes well-
known results from probability theory. Often, however, the
aggregation query consists of the AVG, SUM, COUNT, VARIANCE,
or STD DEV operator applied not to all the tuples in a given
base relation, but to the tuples in a result relation that is
speci�ed using standard selection, join, and projection op-
erators. Recent generalizations [Haa96a, Haa96b] of Hoe�d-
ing's inequality and the standard clt permit development of
con�dence-interval formulas for many of these more complex
queries. These formulas are summarized in the Appendix.

5 Performance Issues

In this section, we present initial results from an implemen-
tation of online aggregation in postgres; these result illus-
trate the functionality of the system as well as some perfor-
mance issues. Our implementation is based on the publicly
available Postgres95 distribution [Pos95], Version 1.3. Our
measurements were performed with the postgres server
running on a DEC3000-M400 with 96Mb main memory, a
1Gb disk, and the DEC OSF/1 V3.2 operating system. The
client application, written in Tcl/Tk, was run on an HP
PA-RISC 715/80 workstation on the same local network.

For these experiments we used enrollment data from the
University of Wisconsin, which represents the enrollment
history of students over a three-year period. We focus on
a single table, enroll, which records information about a
student's enrollment in a particular class. The table has
1,547,606 rows, and in postgres occupies about 316.6 Mb
on disk.

Our �rst experiment's query simply �nds the average
grade of all enrollments in the table:

Query 4:

SELECT AVG(grade), 0.99 as Confidence,

consAvgInterval(0.99) as Interval

FROM enroll;

In addition to the average grade, this query also returns a
conservative con�dence interval for the average grade; this
interval contains the �nal answer with probability at least
99%. The function consAvgInterval is based on the formula
for �n given in (1). Both AVG and consAvgInterval are
aggregate functions registered with postgres, and provide
running output during the online aggregation.

Figure 5 shows the results of running the query in var-
ious con�gurations of the system. The vertical bar at 642
seconds represents the time taken for postgres to do tra-
ditional \batch" processing. Each of the curves represents
the half-width (�n) of a running interval with 99% con�-
dence, based on a sequential scan of the enroll table. In
each experiment we varied the \skip factor" described in
Section 3.2.7 between 10 and 10000.

The �rst point to note is that online aggregation is ex-
tremely useful: reasonable estimates are available quickly.
In addition, these experiments illustrate the need for setting
the skip factor intelligently. Our client application is written
in Tcl/Tk, an interpreted (and hence rather slow) language;
for our experiments it also produces an output trace per
tuple displayed. As the skip factor is reduced, the client
application becomes overburdened and requests tuples at a
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Figure 5: Half-width (�n) of conservative con�dence interval
for Query 4.

much slower rate than they can be delivered by the server;
note that the con�dence intervals for \skip10" are about
an order of magnitude wider than those for \skip1000" and
\skip10000". A naive implementation of online aggregation,
as suggested in Section 3.1, would correspond to a skip-
factor setting of 1. Such an implementation would have very
poor performance, shipping and displaying as many rows as
there are in enroll.

Our second experiment uses a similar query, which re-
quests the average grade per \college" in the university.

Query 5:

SELECT college, AVG(grade),

0.95 as Confidence,

consAvgInterval(0.95) as Interval,

FROM enroll

GROUP BY college;

Note that in this query we choose a lower con�dence
(95%), which allows us to get smaller intervals somewhat
more quickly. There are 16 values in the college column.
In Figure 6 we present performance for a large group (col-
lege=L, 925596 tuples), and for a small group (college=S,
15619 tuples), using a variety of query plans. In each graph,
we measure the half-width of the con�dence interval over
time for (1) a sequential scan, (2) a clustered index stride,
(3) an unclustered index stride, and (4) a clustered index
stride in which all groups but the one measured are stopped
early by pressing the \stop-sign" button soon after the query
begins running (\L only" and \S only" in Figures 6 and 7).

Clearly, index stride is faster for clustered indices than
for unclustered ones, since the number of heap-�le I/Os is
reduced by clustering. More interestingly, note that when
some groups are stopped during index striding, the groups
that remain are computed faster; this is re
ected in the
steeper decline of \clustered: L only" and \clustered: S
only" relative to the corresponding \clustered" curves. Per-
haps the most interesting aspect of these graphs is the dif-
ference between sequential scanning and index striding. Se-
quential scanning retrieves tuples faster than index striding,
at the cost of lack of control. For the large group (L), the
superior speed of sequential scanning is re
ected in the rate
at which the half-width of the con�dence interval decreases.
However, for the smaller group (S), even the unclustered in-

dex stride drops more steeply than sequential scan. This is
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Figure 6: Half-width (�n) of conservative con�dence interval
for Query 5, large group.

0 200 400 600
seconds

0.05

0.10

0.15

0.20

ha
lf

-i
nt

er
va

l a
t 

95
%

 c
on

fi
de

nc
e unclustered: S

clustered: S
clustered: S only
sequential: S

Figure 7: Half-width (�n) of conservative con�dence interval
for Query 5, small group.

due to the fact that tuples from group S appear fairly rarely
in the relation. Sequential scan provides these tuples only
occasionally, while index striding | even when no groups
are stopped | fetches tuples from S on a regular basis as
part of its round-robin schedule. This highlights an addi-
tional advantage of index striding: it provides faster esti-
mates for small groups than access methods that provide
random arrivals of tuples.

These experiments provide some initial insights into our
techniques for online aggregation, and serve as evidence that
our approach to online aggregation provides functionality
and performance that would not be available in naive solu-
tions. There is clearly much additional work to be done in
measuring the costs and bene�ts of the various techniques
proposed here. We reserve such issues for future study.

6 Conclusion and Future Work

In this paper we demonstrate the need for a new approach to
aggregation that is interactive, intuitive, and user-controlla-
ble. Supporting this online approach to aggregation requires
signi�cant extension to a relational database engine. As a

prototype implementation, we extended postgres with ag-
gregates that produce running output, hash-based grouping
and duplicate-elimination, index striding, minor optimiza-
tion changes, new api's and user interfaces. Based on these
extensions we developed a relatively attractive system that
satis�es many of the performance and usability goals we set
out to solve.

An important feature of a user interface for online aggre-
gation is the ability to produce statistical con�dence inter-
vals for running aggregates. This paper indicates how such
con�dence intervals can be implemented in any dbms that
stores rudimentary statistics such as minimum and maxi-
mum values per column.

As we have noted, the usability and performance needs
of online aggregation are not crisply de�ned, and there is
much latitude in the solution space for the problem. We in-
tend to visit more issues in more detail in our next phase of
development, which will be done in the context of a commer-
cial parallel object-relational dbms. We conclude by listing
some directions we are considering for future work:

� User Interface: Online aggregation is motivated by
the need for better user interfaces, and it is clear that
additional work is needed in this area. One direc-
tion we plan to pursue is to present running plots
of queries on a 2-dimensional canvas, as exempli�ed
by the (batch) visualization system Tioga DataSplash
[ACSW96]. In such a system, one can view the screen
as a \graphical aggregate" | many data items are
aggregated into one progressively re�ned image. Tech-
niques for storing and presenting progressive re�ne-
ments of images are well understood [VU92] and ex-
ploited by popular web browsers. It would be in-
teresting to try to �nd common ground between the
techniques presented here, and the image compression
techniques used for progressive network delivery.

Another interface problem is to present \just enough"
information on screen. In current OLAP systems, this
is typically handled by presenting the input data in a
small number of default aggregate groups, and then al-
lowing \drill-down" and \roll-up" facilities. We hope
to combine this interface with online processing so that
drill-down is available instantly, with super-aggregates
being continuously computed in the background while
users drill into ad hoc sub-aggregates that are com-
puted more quickly.

� Nested Queries: An open question is how to provide
online execution of queries containing aggregations in
both subqueries and outer-level queries: the running
results at the top level depend on the running results
at lower levels. Traditional block-at-a-time process-
ing requires the lower query blocks to be processed
before the higher ones, but this is a blocking execu-
tion model,2 and hence violates our performance goals.
Any non-blocking approach would lead to signi�cant
statistical problems in terms of con�dence intervals,
in addition to complicating other performance and us-
ability issues. An additional question is how processing
is best time-sliced across the various query blocks, in
both uniprocessor and parallel con�gurations.

� Control Without Indices: As of now, we can pro-
vide maximal user control only when we have an ap-
propriate index to support index striding. We are con-
sidering techniques for providing this control in other

2No pun intended.
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scenarios as well. For example, in order to provide
partiality in aggregates over joins, it may be bene�cial
to e�ectively scan base relations multiple times, each
time providing a di�erent subset of the relation for join
processing; the early subsets can contain a preponder-
ance of tuples from the preferred groups. The function-
ality of multiple scans can be e�ciently achieved via
\piggy-back" schemes which allow more than one cur-
sor to share a single physical scan of the data. Another
possibility is to recluster heaps on the 
y to support
more desirable access orders on subsequent rescans.

� Checkpointing and Continuation: Aggregation
queries that bene�t from online techniques will typ-
ically be long-running operations. As a result they
should be checkpointed, so that computation can be
saved across system crashes, power failures, and opera-
tor errors. This is particularly natural for online aggre-
gation queries: users should be allowed to \continue"
queries (or pieces of queries) that they have previously
stopped. Checkpoints of partially computed queries
can also be used as materialized sample views [Olk93].

� Tracking Online Queries: Although users may of-
ten stop aggregation processing early, they may also
want to make use of the actual tuples used to compute
the partial aggregate. This is a common request in the
context of, for example, �nancial auditing or statistical
quality control: an unusual value of an online aggre-
gate produced from a sample population may indicate
the need to study that population in more detail. In or-
der to support such query tracking, one must generate
a relation, RID-list, or view while processing the ag-
gregation online. Techniques for doing this e�ciently
will depend on the query.

� Extensions of Statistical Results: We are actively
working on con�dence intervals for additional aggre-
gate functions. In addition, we are developing tech-
niques to provide \simultaneous" con�dence intervals,
which can describe the statistical accuracy of the es-
timations for all groups at once, complementing the
con�dence interval per group. Finally, the statisti-
cal techniques in this paper assume accurate statis-
tical information in the system catalogs, particularly
regarding the cardinalities of relations. An extension
we are pursuing is to provide con�dence intervals that
can tolerate a certain amount of error in these stored
statistics.
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Appendix: Formulas for Running Con�dence Intervals

In this appendixwe provide formulas that can be used to compute

conservative and large-sample con�dence intervals for a variety of

aggregation queries encountered in practice. Throughout, we �x

the con�dence parameter p and give formulas for the precision

parameter �n.
We �rst consider queries of the form

SELECT op(expression) FROM R WHERE predicate;

where op is one of COUNT, SUM, AVG, VARIANCE, or STD DEV, ex-

pression is an arithmetic expression as before, and predicate is

an arbitrary predicate involving the attributes of R. When op is

equal to COUNT, we assume for simplicity that expression is equal

to *, that is, the \value" of the expression is equal to 1 for all

tuples. (Null values can be handled by modifying predicate, and

counts of distinct values can be handled as described below.) As

in Section 4, relation R consists of tuples t1; t2; : : : ; tm.
If op is equal to COUNT or SUM, the formulas in (1) and (3) apply,

provided we take v(i) equal to m times the value of expression

when applied to tuple ti if tuple ti satis�es predicate and v(i) = 0

otherwise.

To handle the remaining operators, namely AVG, VARIANCE,

and STD DEV, we proceed as follows. As in Section 4, let v(i) be
the value of expression when applied to tuple ti, Li be the random
index of the ith tuple retrieved fromR, and a; b be a priori bounds
on the function v. Denote by S (� R) the set of tuples that satisfy
predicate, and set u(i) = 1 if ti 2 S and u(i) = 0 otherwise. After

n tuples have been retrieved, the running aggregates for an AVG,

VARIANCE, and STD DEV query are given by

Y n(S) =
1

In

nX
i=1

uv(Li);

Zn(S) =
1

In � 1

nX
i=1

u(Li)
�
v(Li)� Y n(S)

�2
;

and
p
Zn(S), respectively, where In =

Pn
i=1 u(Li) and the func-

tion uv is de�ned by uv(i) = u(i)v(i). We assume throughout

that In > 1.

Set �0(a; b) = (jaj _ b
��
jaj+ b

�
� 0:25

�
jaj _ b

�2
,

�(a; b) =

8>>><
>>>:

8

(b� a)4
if 0 � a < b or a < b � 0;

max

�
8

(b� a)4
;

2

�20(a; b)

�
if a < 0 < b;

and

Bn =
1

�(a; b)bIn=2c
ln
� 2

1� p

�
;

where x_y = max(x; y) and bxc is the greatest integer� x. Also
set Tn(f) = (1=n)

Pn
i=1 f(Li),

Tn;q(f) =
1

n� 1

nX
i=1

�
f(Li)� Tn(f)

�q

and

Tn;q;r(f; g) =
1

n� 1

nX
i=1

�
f(Li)� Tn(f)

�q�
g(Li)� Tn(g)

�r
;

where f and g are arbitrary real-valued functions de�ned on

f 1;2; : : : ;m g. Finally, set

Gn = Tn;2(uv)� 2Rn;2Tn;1;1(uv; u) +R2
n;2Tn;2(u)

and

G0n = Tn;2(uv
2)� 4Rn;2Tn;1;1(uv

2; uv)

+ (4R2
n;2 � 2Rn;1)Tn;1;1(uv

2; u) + 4R2
n;2Tn;2(uv)

+ (4Rn;1Rn;2 � 8R3
n;2)Tn;1;1(uv; u) + (2R2

n;2 �Rn;1)
2Tn;2(u);

where Rn;1 = Tn(uv
2)=Tn(u), Rn;2 = Tn(uv)=Tn(u), and

uv2(i) = u(i)
�
v(i)

�2
.

Using this notation, Table 1 gives formulas for the precision

constant �n in conservative and large-sample con�dence intervals;

these formulas are derived in [Haa96a, Haa96b]. The quantity s
that appears in the formulas is a lower bound for the (unknown)
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type AVG VARIANCE STD DEV

conserv. (b� a)

�
1

2In
ln
� 2

1� p

��1=2 s(b� a)2

4(s� 1)2
+

sB
1=2
n

s� 1

s(b� a)2

4(s� 1)2
+

sB
1=4
n

s� 1

lg-sample

 
z2pGn

nT 2
n(u)

!1=2  
z2pG

0
n

nT 2
n(u)

!1=2  
z2pG

0
n

4nZn(S)T 2
n(u)

!1=2

Table 1: Formulas for the precision parameters �n: one table.

quantity jSj; the larger the lower bound s, the narrower the re-
sulting conservative con�dence interval. Note that we can set

s = In if In is su�ciently large. When predicate is empty, so that

u(i) = 1 for 1 � i � M , then s can be taken as n in the second

and third entries in the �rst row of the table. Moreover, in each

of these entries the �rst term in the sum can be discarded.

The formulas in Table 1 also apply to queries of the form

SELECT op(expression) FROM R WHERE predicate

GROUP BY attributes

For the group with attribute value equal to x, use these formulas
with u(i) = 1 if tuple ti satis�es predicate and ti.attribute = x,
and u(i) = 0 otherwise. The formulas also can easily be modi�ed

to handle queries of the form

SELECT op(DISTINCT expression) FROM R WHERE predicate;

The idea is to set U 0i = 1 if tLi 2 S and v(Li) 6= v(Lj) for
1 � j � i � 1; otherwise, set U 0i = 0. The formulas in Table 1

then hold with u(Li) replaced by U
0
i , uv(Li) replaced by U

0
iv(Li),

and In replaced by I 0n =
Pn

i=1 U
0
i.

We next consider queries of the form

SELECT op(expression) FROM R1; R2; : : : ; RK

WHERE predicate;

where K > 1, op is one of COUNT, SUM, or AVG, expression is an

arithmetic expression, and predicate is an arbitrary predicate in-

volving the attributes of input relations R1 through RK. As

before, expression is always equal to * when op is equal to COUNT.

Usually, predicate is a conjunctionof join and selection predicates.

A typical instance of such a query might look like

SELECT SUM(supplier.price * inventory.quantity)

FROM supplier, inventory

WHERE supplier.part_number = inventory.part_number

AND inventory.location = 'San Jose';

For 1 � k � K, denote the tuples in Rk by tk;1; tk;2; : : : ;
tk;mk

, where mk is the number of tuples in Rk. Set v(i1; i2;
: : : ; iK) equal to � times the value of expression when applied to

tuples t1;i1 ; t2;i2 ; : : : ; tK;iK
, where � = 1 if op is equal to AVG and

� = m1m2 � � �mK if op is equal to COUNT or SUM. Denote by S the

subset of R1�R2�� � ��RK such that (t1;i1 ; t2;i2 ; : : : ; tK;iK
) 2 S

if and only if these tuples jointly satisfy predicate. Set u(i1; i2;
: : : ; iK) = 1 if (t1;i1 ; t2;i2 ; : : : ; tK;iK

) 2 S and u(i1; i2; : : : ; iK) =
0 otherwise. As before, let a; b be a priori bounds on the function

v.
For each relation Rk, we assume that tuples are retrieved

in random order, independently of the retrieval order for the

other relations. Denote by Lk;i the random index of the ith
tuple retrieved from relation Rk. Suppose that n tuples have

been retrieved from relation Rk for 1 � k � K, where 1 � n �
min1�k�Kmk . (See [Haa96a, Haa96b] for extensions to the case

in which nk tuples are retrieved from Rk for 1 � k � K and

nk 6= nk0 for some k; k
0.) The running aggregate for a COUNT or

SUM query is given by ~Y n = ~Tn(uv), where

~Tn(f) =
1

nK

nX
i1=1

nX
i2=1

� � �

nX
iK=1

f(L1;i1 ;L2;i2 ; : : : ; LK;iK
)

type SUM/COUNT AVG

conserv. (b� a)

�
1

2n
ln
� 2

1� p

��1=2
�

lg-sample

 
z2p

~Tn;2(uv)

n

!1=2  
z2p

~Gn

n ~T 2
n(u)

!1=2

Table 2: Formulas for the precision parameter �n: K tables.

and the de�nition of the function uv is analogous to the de�nition
for the single-table case. The running aggregate for an AVG query

is given by ~Y n(S) = ~Tn(uv)= ~Tn(u).
Set

~Tn(f ;k; j) =
1

nK�1

nX
i1=1

� � �

nX
ik�1=1

nX
ik+1=1

� � �

nX
iK=1

L1;i1 ; : : : ;Lk�1;ik�1 ;Lk;j ; Lk+1;ik+1 ; : : : ; LK;iK
);

~Tn;q(f) =

KX
k=1

 
1

(n� 1)

nX
j=1

�
~Tn(f ;k; j)� ~Tn(f)

�q!
;

and

~Tn;q;r (f; g) =

KX
k=1

 
1

(n� 1)

nX
j=1

�
~Tn(f ;k; j)� ~Tn(f)

�q
�
~Tn(g; k; j)� ~Tn(g)

�r!
:

Also set ~Rn = ~Tn(uv)= ~Tn(u) and

~Gn = ~Tn;2(uv)� 2 ~Rn
~Tn;1;1(uv; u) + ~R2

n
~Tn;2(u):

Using this notation, Table 2 gives formulas for the precision con-

stant �n in conservative and large-sample con�dence intervals.

As above, the formulas are derived in [Haa96a, Haa96b]. As can

be seen, there is currently no formula available for conservative

con�dence intervals corresponding to AVG queries with selection

predicates. (Actually, when there are no predicates, so that the

average is being taken over a cross-product of the input relations,

the formula in Table 2 for COUNT and SUM queries applies.

This case is uncommon in practice, however.)
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