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Abstract

Cleaning data of errors in structure and content is im-
portant for data warehousing and integration. Current
solutions for data cleaning involve many iterations of
data “auditing” to find errors, and long-running trans-
formations to fix them. Users need to endure long
waits, and often write complex transformation scripts.

We present Potter's Wheel, an interactive data clean-
ing system that tightly integrates transformation and
discrepancy detection. Users gradually build trans-
formations to clean the data by adding or undoing
transforms on a spreadsheet-like interface; the effect
of a transform is shown at once on records visible on
screen. These transforms are specified either through
simple graphical operations, or by showing the de-
sired effects on example data values. In the back-
ground, Potter's Wheel automatically infers structures
for data values in terms of user-defined domains, and
accordingly checks for constraint violations. Thus
users can gradually build a transformation as discrep-
ancies are found, and clean the data without writing
complex programs or enduring long delays.

1 Introduction

transformation tools. The user first audits the data to detect
discrepancies using an auditing tool like Unitech Systems’
ACR/Data or Evoke Software'sMigration Architect. Then

she either writes a custom script or usesErL (Extrac-
tion/Transformation/Loading) tool likBata Junction or As-
cential Software’DataStage to transform the data, fixing
errors and converting it to the format needed for analysis.
The data often has many hard-to-find special cases, so this
process of auditing and transformation must be repeated un-
til the “data quality” is good enough. This approach has two
problems.

e Lack of interactivity: Transformation is typically done as

a batch process, operating on the whole dataset without
any feedback. This leads to long, frustrating delays during
which users have no idea if a transformation is effective.

Such delays are compounded by a decoupling of transfor-
mation and discrepancy detection — these are often done as
separate steps, with separate software. This forces users to
wait for a transformation to finish before they can check if

it has fixed all anomalies. More importantly, somested
discrepanciegrise only after others have been fixédg.,

a typo in a year field such as “19997” can be found (by
running a suitable algorithm on the year values) only af-
ter all dates have been converted to a uniform date type —
until then, the year values cannot be isolated from the date

Organizations accumulate much data that they want to accessstrings. Thus the decoupling makes it hard to find multi-
and analyze as a consolidated whole. However the data of-ple discrepancies in one pass, leading to many unnecessary
ten has inconsistencies in schema, formats, and adherence tierations.

constraints, due to many factors including data entry errors \eed for much user efforBoth transformation and dis-

and merging from multiple sources [6, 13]. The data must be
purged of such discrepancies and transformed into a uniform

format before it can be used. Sudhta cleaningis a key

crepancy detection need significant user effort, making
each step of the cleaning process painful and error-prone.

challenge in data warehousing [6]. Data transformation is Commercial ETL tools typically support only some re-
also needed for extracting data from legacy data formats, andstricted transformisbetween a small set of formats via

for Business-to-Business Enterprise Data Integration [26].

1.1 Current Approaches to Data Cleaning

Data cleaning has three components: auditing data to fin
discrepancies, choosing transformations to fix these, and a
plying the transformations on the dataset. There are current
many commercial solutions for data cleaniegy, see [9] for

an overview). They come in two forms: auditing tools and
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cess involves user interaction, the system must support trarf§ght delay data from FEDSTATS (www.fedstats.gov).
formation and discrepancy detection through simple specif
cation interfaces and with minimal delays. ) ]
Potter's Wheels an interactive data cleaning system thatotter's Wheel allows users to define custdomains and
integrates transformation and discrepancy detection in a si§°"responding algorithms to enforce domain constraints.
gle interface. The software is publicly available from Berke-However since the data values are often composite struc-
ley [22], and some of the main ideas are also used in Coherddres. the system needs to automatically parse a string value
Content WorkBench [8]. into a structure _composed of user_—deflned _domalns, and then
Users gradually build transformations in Potter's WheePPly suitable discrepancy detection algorithms.
by composing and debugging transforms, one step at a time, This is similar to the problem of inferring regular expres- _
on a spreadsheet-like interface (see Figure 1; the details wiion structures from examples, that has been addressed in
be explained in later sections). Transforms are specifief’® machine learning literature.g, [20, 5]). We are how-
graphically, their effect is shown immediately on records vis€Ver not interested in abstract structures like regular expres-
ible on screen, and they can be undone easily if their effecons, but rather in structures in terms of user-defined do-
are undesirable. Discrepancy detection is done automaticalfj@ins. For example, parsing flight records liRaylor, Jane,
in the backgroundyn the latest transformed view of the data JFK to ORD on April 23, 2000 Coatfas “[A-Za-z, |* [A-
and anomalies are flagged as they are found. This pipeliél® to [A-Z]* on [A-Za-z]* [0-9]*, [0-9]* [A-Za-z]*" does
ing of transformation and discrepancy detection makes daf¥t help much with detecting anomalies that satisfy the ba-
cleaning a tight, closed loop where users can gradually d&i¢ pattern. Whereas parsing it as “[A-Za-z,JAirpori>

velop and refine transformations as discrepancies are fountp <Airport> on <Date> <Class>" would allow us to
detect logical errors like false airport codes or dates.

1.2.1 Inte_ractwe Transformation i We believe that application developers will specify use-
From the literature on transformation languagey{ [1,  fy| application-specific domains and corresponding domain
7, 16]) we have adapted a sma_ll set of tranSfOFmS that.SUlébnstraints (like date, airport code, construction part name),
port common transformations without explicit programming.provided Potter's Wheel can automatically infer patterns in
Most of these are simple and easy to specify graphicallferms of these domains and apply suitable algorithms. The
However some transforms used to parse and split values ingsiculty is that these domains are typically not specified as
atomic components are quite complex. Their specificatiogyplicit patterns but rather as encapsulated set-membership
requires users to enter regular expressions or grammars, afihctions that Potter's Wheel cannot understand. A second
in some cases write custom programs (Section 4.3). Instegghique feature of pattern learning in the data cleaning con-
Potter's Wheel lets users specify the desired results on exafsyt is that the values will have discrepancies in their struc-
ple values, and automatically infers a suitable transform, gy e jtself; hence Potter's Wheel can only detect approximate
ing the structure extraction techniques described below. Wgyctures. There is a tradeoff here between choosing struc-
describe such graphical specification, and the incrementgles that match most of the values in a column and choosing
application of these transforms, in Section 4. ~ structures that do not overfit the data values. Section 3 de-
Potter's Wheel compiles a sequence of transforms into gqripes how the Minimum Description Length principle [24]

program after the user is satisfied, instead of applying themgan pe used to extract approximate structures for values in a
piecemeal over many iterations. Users specify or undo thesgay that balances this tradeoft.

transforms in orders they find natural, often only when dis-

crepancies are found, and this exploratory behavior could 'S potter's Wheel Architecture

sult in redundant or sub-optimal transforms. In addition, the

main cost in the transformation is that of memory allocationThe main components of the Potter's Wheel architecture
and copying. In the full version of the paper [22], we discusgFigure 2) are &ata Sourcea Transformation Enginéhat
how the final sequence of transforms can be converted to @pplies transforms along 2 paths, @mline Reordererto
more optimal form, including ways of pipelining transforms support interactive scrolling and sorting at the user inter-
to minimize memory allocations and copies. face [23, 21], and aAutomatic Discrepancy Detector

File Cluster Transform Discrepancies | Sort

-

1.2.2 Extensible Discrepancy Detection



2.1 Data Source

4—{ Discrepancy Detectc*r

>

. . scroll [ &
Potter's Wheel accepts input data as a single, pre-mer —> 0
stream, that can come from an ODBC source or any AS check a T
file descriptor (or pipe). The ODBC source can be used t§ (for errors § Input
query data from DBMSs, or even from distributed source T data
via middleware. In practice, schematic differences betwee 3 Transform- source
sources will restrict the tightness of the integration via £ ation Engmesgcet page-
guery (even Figure 1 shows poor mapping in 8wirceand 0 |« <« Cllbar posn
Destinationcolumns). Potter's Wheel will flag areas of poor compile onii
integration as errors, and the user can transform the data, specify/undo v niine
moving values across columns to unify the data format. transforms Optimized Program reorderer

When reading from ASCII files, each record is viewed

as a single wide column. The user can identify col- Figure 2: Potter's Wheel Architecture

umn delimiters graphically and split the record into con-
stituent columns. Such parsing is more complex and timetuples fetched from the source are transformed and sent to
consuming on poorly structured data (such as from welthe discrepancy detector, in addition to being sent to the
pages). Potter's Wheel helps this process througtpla  Online Reorderer. The discrepancy detector first parses
transform that can be specified by example (Section 4). Colkalues in each field intsub-componentaccording to the
umn types and delimiters can also be specified in a metadasdructure inferred for the column. The structure of a col-
file. Once a dataset has been parsed, the transformation camn is a sequence of user-defined domains, and is inferred
be stored as a macro for easy application on similar datase®&s soon as it is formed.€., either when the input stream

) ) is started or when a new column is formed by a trans-
2.2 Interface used for Displaying Data form), as we describe in Section 3.2. Then suitable algo-
Data read from the input is displayed on a Scalable Spreadthims are applied for each sub-component, depending on
sheet interface [21] that allows users to interactively re-soiits domain. For example, if the structure of a column is
on any column, and scroll in a representative sample of thenumber><word><time> and a value isl9 January
data, even over large datasets. When the user starts Pottelt45, the discrepancy detector fintig, January, and06:45
Wheel on a dataset, the spreadsheet interface appears imras-sub-components belonging to theumber>, <word>,
diately, without waiting until the input has been completelyand <time> domains, and applies the detection algorithms
read. This is important when transforming large datasets @pecified for those domains.
never-ending data streams. 25 C i S T »

The interface supports this behavior using an Online Re-" omp! '”9 a gqgence_o ranstorms

orderer [23] that continually fetches tuples from the sourcé\ter the user is satisfied with the sequence of transforms,
and divides them into buckets based on a (dynamically conf2otter's Wheel can compile it into a transformation, and ex-
puted) histogram on the sort column, spooling them to disk iPOrt it as either a C or Perl program, or a Potter's Wheel
needed. When the user scrolls to a new region, the reorder@@cro — the latter can be invoked on other datasets to reap-
picks a sample of tuples from the bucket corresponding to thly the transformation without respecifying each transform.
scrollbar position and displays them on screen. Thus usef8 future we want to support compilation into declarative lan-
can explore large amounts of data along any dimension. Eguages like SQL or XSLT, so that a database system could
ploration helps users spot simple discrepancies by observigrform further optimizations.
the structure of data as values in the sort-column change. 3 Extensible Discrepancy Detection
Potter's Wheel allows users to define arbitratgmaing
Transforms specified by the user need to be applied in twglong with corresponding discrepancy detection algorithms.
scenarios. First, they need to be applied when records awe describe the API for specifying domains in Section 3.1.
rendered on the screen. With the spreadsheet user interfaggsed on these domains, the system automatically infers ap-
this is done when the user scrolls or jumps to a new scrollbgsropriate structures for values in each column (Section 3.2).
position. Since the number of rows that can be displayed o8ome of the domains in this structure are tharameterized
screen at a time is small, users perceive transformations sr the specific column values, as discussed in Section 3.3.
being instantaneous (this clearly depends on the nature of til@nce this detailed structure is inferred, the system parses val-
transforms; we return to this issue in Section 4.2). Secondjes and sends individual components to suitable discrepancy
transforms need to be applied to records used for discrepanggtection algorithms (Section 2.4).
detection because, as argued earlier, we want to check for

2.3 Transformation Engine

discrepancies on transformed versions of data. 3.1 Domains in Potter's Wheel
L Domains in Potter’s Wheel are defined through the interface
2.4 Automatic Discrepancy Detector shown in Figure 3. The only function required to be im-

While the user is specifying transforms and exploring theplemented is an inclusion functionatch to identify values
data, the discrepancy detector runs in the background, appliyr the domain. The optionalardinality function is helpful
ing appropriate algorithms to find errors in the data. Hencén structure extraction as we describe in Section 3u-



public abstract class Domain {

/** Required Inclusion Function — Checks if value satisfies domain constraints. (Sections 3.1) */
public abstract boolean match(char *value);

/** Optional function — finds the number of values in this domain with given length. This could vary
based on parameterization. (Sections 3.2 and 3.3) */
public int cardinality(int length);

[** Optional function — updates any state for this domain using the given value. ( Sections 3.1 and 3.3) */
public void updateStats(char* value);

[** Optional function — checks if a given value is a discrepancy, with a certain probability. Typically needs
to know the total number of tuples in the data seg(see [14]). (Section 3.1) */

public float matchWithConfidence(char *value, int dataSize);

[** Optional function — checks if one pattern is redundant after another. (Section 3.2) */
public boolean isRedundantAfter(Domain d);

Figure 3: API for user-defined domains. These functions are explained in the sections indicated.

dateStats is mainly used to parameterize the domains (Sec3.2.1 Evaluating the Suitability of a Structure

tion 3.3). It can also be used by a discrepancy detection algqthere are three characteristics that we want in a structure for
rithm to accumulate state about the data. This accumulat@He column values.

state can also be used to catohlti-row anomalies where ¢ Recall: The structure should match as many of the column
a set of values are individually correct, but together violate/ajues as possible.

some constraint. For example, a duplicate elimination algos precision: The structure should match as few other values
rithm could usaupdateStats to build an approximate hash ta- gg possible.
ble or Bloom filter of the values seen so far. ThatchWith- o ConcisenessThe structure should have minimum length.
Confidence method is helpful for prObab”iStiC and incremen- The first two criteria are standard IR metrics for evaluat-
tal discrepancy detection algorithms, such as sampling basggly the effectiveness of a pattern [27]. We need to consider
algorithms (e.g. [14]). Th&RedundantAfter method is used  recall because the values might be erroneous even in struc-
while enumerating structures, as described in Section 3.2. tyre; all unmatched values are considered as discrepancies.
Potter's Wheel provides the following default domains:Considering precision helps us avoid overly broad structures
arbitrary ASCII strings (henceforth callegl), character like £* that do not uniquely match this column.
strings (calledMords likewise AllCapsWordsaandCapWords The last criterion of conciseness is used to avoid over-
refer to words with all capitals and capitalized words respecfitting the structure to the example values. For instance, we
tively), Integers sequences oPunctuation C-style Iden-  want to parseMarch 17, 2000 as[A-Za-z]* [0-9]*, [0-9]*
tifiers, floating point values (henceforth callddouble3, ratherthanamarch17, 2000
English words checked according ispell (IspellWord$, This last example highlights the importance of allowing
commonNames(checked by referring to the online 1990 user-defined domains in the alphabet from which we create
census resultsMoney and a generic regular-expression do-the structure. For instance if we did not haerd andIn-

main that checks values using the PCRE library. tegeras domains in the alphabélarch 17, 2000
) would be the better structure thigw-Za-z]* [0-9]*, [0-9]*
3.2 Structure Extraction since it has the same recall (100%), better precision (since it

A given value will typically be parseable in terms of avoids matching any other date), and smaller pattern length

the default and user-defined domains in multiple waysthan [A-Za-z]" [0-9]", [0-9]". "Intuitively, the latter is a

For example,March 17, 2000 can be parsed ag*, as MOré concise pattern, but this @sly because we think of
A-Za-3" [0_9]* 0-9* "or as lachrM* [17]* [20]*’ to the[A-Za-z]" as the domain Word, rather than as the Kleene

name a few possible structures. Structure extraction involved0Sure of a set of 56 characters

choosing the best structure for values in a column. Formally, | nese three criteria are typically conflicting, with broad
patterns likes* having high recall and conciseness but low

given a set of column values, vo, ..., v, and a set of do- - - . ; 7>

mainsds, do, . . . , d,,, we want to extract a suitable structure precision, and specific patterns having high precision but low

S —d.d d, ,wherel < s,...s, <m conciseness. An effective way to make the tradeoff between
— Ysp s e - Msps = - Sp > .

over-fitting and under-fitting is through the Minimum De-
tions defined in Figure 3 — even among these, only the se, cription Length (MDL) principle [24], that minimizes the

; : . otal length required to encode the data using a structure.
membership functionnfatch) may be available. In general
the inferred structure must be approximate, since the dafdescription Length: A metric for structure quality
could have errors in the structure itself. We first describéNVe now derive the description length (DL) for encoding a set
how to evaluate the appropriateness of a structure for a set of values with a structure, as a measure of the appropriate-
values and then look at ways of enumerating all structures swess of the structure; better structures result in smaller DLs.
as to choose the best one. According to the MDL principle, the DL for using a structure

All that we know about these domains is from the func-



to describe a set of column values is defined as: the length &6 encode the values in the column is,

he theory (the structure definition) plus the length requir n

10 encods the values given the stricure, o plog e /m)x Ly (p log MazLen + X2y sp(wsld:,))
We need a DL that can encapsulate the goals of Recall, + (1 — f)(log |[¢AvaValLen|)

Precision, and Conciseness (as penalties). Concisenessaiger some transformation this becomes

directly captured by the length of theory for the structure. ;1001 + AvgValLenlog|é| + fp log MaxzLen+

For values that match the structure, the length required for n p )

encoding the data values captures the Precision. We taCkﬁ f ) Z Z log |values of lengtten(w; ;) that satisfyd, |

erroneous data values by positing that values not matching, » |values of lengtlen(w; ;)|

the structure are encoded explicitly by writing them out, i.e.

using the structuré*. The latter encoding is typically more ~ The best way to compute the cardinality in the above ex-

space-intensive since it assumes no structure, forcing valuggession is using thiet cardinality(int length) function for the

to be written out explicitly. Thereby we capture Recall. ~ domaind,, if it has been defined. For other domains we ap-

Example: Consider a structure &/ord Integer Integeand proxime_lte the fraction_directly by repeatedl_y choosing ran-

a value ofMay 17 2025. The number of bits needed to dom SF“”GS of approp.rlateleng'th and checking if they satisfy

encode the structure i$log (number of domains Then ds,. Since these fractions are independent of the actual val-

we encode the value by first specifying the length of4€S; they can b_e pre-cqmputed and cached.
each sub-component and then, for each sub-component, T the length is too high we may need to check many val-

specifying the actual value from all values of the samée’€s before we can estimate this fraction. Hence in the ab-
length. In this case, the sub-component lengths ar ence of a user-definedrdinality function, we compute the

3, 2, and 4. The domains are strings over alphabe action of matches for a few small lengths, and extrapolate
0]’: si,ze 52, 10, and 10 ([a-zA-Z] and [0-9]). Thus it to larger lengths assuming that the number of matches is a

the description length is: 3 log(number of domains + strict exponential function of the string length.
3log (maximum length of values in each sub-component 3.2.2 Choosing the best structure

log 52% + 1og 10% + log 10*. We have seen how to compute a description length that mea-
Inthe above example, we are able to calculate the lengthgires the suitability of a structure for a given set of values.
of the value encodings for integers and words because Wge now want to enumerate all structures that can match the
know the properties of the domains. We now look at encodya|yes in a column and choose the most suitable one. This
ings for structures of arbitrary domains. Consider a structurgnumeration needs to be done carefully since since the struc-
S of pdomainsd,, ds, .. . d,,. Let|T| denote the cardinality tyres are arbitrary strings from the alphabet of domains, and
of any setl’. The description length of a string of length it will be too expensive to enumerate all such strings.
len(v;) usingSis DL(v;, S) = We apply the algorithm of Figure 4 on a set of sample val-
length of theory forS + length to encodey; given.S ues from the column, and take the union of all structures enu-
Givenm domains, we can represent each domain Wwighn ~ merated thus. We use 100 values as a default; this has proven
bits. Letf be the probability that; matches the structur®. ~ adequate in all the cases we have encountered. During this
If v; does not match, we encode it explicitly. Thus, enumeration, we prune the extent of recursion by not han-
DL(v;,S) = plogm + (1 — f)(log ¢len(¥))) dling structures with meaningless combinations of domains
+ f(space to express with ) such as<word> <word> or <integer> <decimaj>. These

with the three parts of the right hand side representin@ie unnecessarily complicated versions of simpler structures

penalties for Conciseness, Recall, and Precision respe ke <_worq> and <_d<_aC|mal>, and will result in structures
tively. Let vy, . be the values in the column. and with identical precision and recall but lesser conciseness.
. b s ¥n 1

_ We identify such unnecessary sequences usingistRe-
AvgValLen = o1 ;) be the average length of .
vgVallen = )<<, len(v)) 9 9 ndantAfter(Domain d) method ofDomain that determines

the values in the column. It is easy to see that the avera hether this d inis redundanti diatelv after the ai
space needed to encode the values is ether this domain is redundantimmediately after the given

i=1 j=1

domain.
_ _ AvgValLen
DL(S) = plogm + (1 - f)(log|¢ _ ) Even though this is an exponential algorithm, pruning re-
+ f(avg. space to express. .. v, usings) duces the number of structures we enumerate for a column

Just as in the example, we express the valyasingS  considerably. As shown in Figure 5, the number of enumer-
by first encoding the lengths of their components in each daated structures is typically less than 10.
main and then encoding the actual values of the components. ) ) )
For any stringw that falls in a domaint,, letlen(w) be its 33 Structures with Parameterized Domains
length, and letsp(w|d,,) be the space required to uniquely So far the structures that we have extracted are simply strings
encodew among all thden(w)-length strings ind,,. of domains. But the column values are often much more re-
Suppose that value;; matches the structuré§ =  stricted, consisting only of certain parameterizations of the
ds, ds, .. .ds, through the concatenation of sub-componentglomains. For example, all the sub-components from a do-
Vi = Wi 1Wi2 .. Wip, With w; ; € dg; V1 < j < p (this  main might have a constant value, or might be of constant
parsing ofv; is itself not easy; we discuss efficient parsinglength, as shown in the examples of Figure 5.
in Section 4.3.2). Lef\faxLen be the maximum length of Potter's Wheel currently detects two parameterizations
the values in the column. Then the average space requireditomatically: domains with constant values and domains



Example Column Value # StructuresFinal Structure Chosen
(Example erroneous values) Enumerateg(Punc = Punctuation)
/** Enumerate all structures of domaids, .. . d, 60 5 Integer
that can be used to match a vaiye*/ UNITED, DELTA, AMERICAN etc. 5 IspellWord
void enumerate(v; , di,...dp) { SFO, LAX etc. (JFK to OAK) 12 AllCapsWord
Letwv; be a string of charactets; . . . w,, 1998/01/12 9 Int Punc(/) Int Punc(/) Int
for all domains/ matching prefixv; . . . wy of v; M, Tu, Thu etc. 5 Capitalized Word
do enumerate(wi1 ... Wm , dsy,...ds,) 06:22 5 Int(len 2) Punc(:) Int(len 2
— avoid structures beginning with domains 12.8.15.147 (ferret03.webtop.com 9 Double Punc(’)) Double
d’ that satisfyd’ .isRedundantAfter(d) "GET\b (\b) 5 Punc(") IspellWord Puncf)
prepend! to all structures enumerated above |/Postmodern/lecs/xia/sld013.htm 4 ’
HTTP 3 AllCapsWord(HTTP)
Figure 4: Enumerating various structures for a set/1.0 6 Punc(/) Double(1.0)
of values

Figure 5: Structures extracted for different kinds of columns, using the default
domains listed in Section 3.1. Structure parameterizations are given in parenthesis.

with values of constant length. Such parameterized struéng a Short domain for values less than 255 (to form
tures are especially useful for automatically parsing the valShort.Short.Short.Shortor even by allowing a parameter-
ues in a column, when inferring Split transforms by examplézation of the forminteger (len< 3).
(Section 4.3). An interesting example of over-fitting is the choice of

In addition, users can define domains that infer custonispellWordfor flight carriers. Although most flight carrier
parameterizations, using thpdateStats method. These do- names occur in thispell dictionary, some like'WA do not.
mains could use specialized algorithms to further refine thétill IspellWordis chosen because it is cheaper to encode
structure of the sub-components that fall within their domainTwA explicitly with a ¢* structure than to encode all carri-
For example, the defaulhtegerdomain in Potter's Wheel ers with the next best structura|lCapsWord The system
computes the mean and standard deviation of its values afidgsTWA as an anomaly — the user could choose to ignore
uses these as parameters, to flag values that are more thathi, or specify a minimum Recall threshold to avoid over-
standard deviations away as potential anomalies. Likewiskitting. In any case, this example highlights the importance
a domain can accept all strings by default, but parameterizsf involving the user in the data cleaning process.
itself by inferring a regular expression that matches the sub- Figure 10 gives more examples of inferred structures.
component values.

The description length for values using a structure often] |nteractive Transformation
reduces when the structure is parameterized. For the default
parameterizations of constant values and constant lengthsHving seen how Potter's Wheel infers structures and iden-
is easy to adjust the formulas given in the previous sectiorifies discrepancies, we turn our attention to its support for
For custom parameterizaﬁons like the regu|ar expression ihnteractlve transformation. We want users to construct trans-

ference discussed above, the user must defineatfimality ~ formations gradually, adjusting them based on continual
function based on the parameterization. feedback. This breaks down into the following sub-goals:

3.4 Example Structures Extracted Ease of specification: Transforms must be specifiable

. - . . through graphical operations rather than custom program-
Consider the snapshot shown in Figure 1 containing fllgthing. Moreover, in these operations, we want to avoid use

delay ste_ltistics. Figure 5 shows the structures extracted f%rf regular-expressions or grammars and instead allow users
some of its column values, and also for some columns fromfb specify transforms by example as far as possible

web access log. We see that the dominant structure is chosen ) ) L .
even in the face of inconsistencies; thereby the system c&rfS€ of interactive application:Once the user has specified
flag these structural inconsistencies as errors to the user, apdransform, they must be given immediate feedback on the
parse and apply suitable detection algorithms for other valud§SUlts of its application so that they can correct it.
that match the structure. Undos and Data Lineage:Users must be able to easily undo
Using these the system flags several discrepancies that wansforms after seeing their effect. In addition, the lineage
had earlier added to the data. For example, the system flagéerrors must be clearke., errors intrinsic to the data must
dates such as9998/05/31 in the date column of Figure 1 as be differentiable from those resulting from other transforms.
anomalies because thetegerdomain for the year column ) ,
parameterizes with a mean of 2043.5 and a standard devid:l Transforms supported in Potter's Wheel
tion of 909.2. It finds the poor mapping in the Source andrhe transforms used in Potter's Wheel are adapted from ex-
Destination columns of Figure 1 as structural anomalies. isting literature on transformation languagesg([16, 7]).
Figure 5 also shows that a column of IP addresses withiVe describe them briefly here before proceeding to discuss
values like12.8.15.147 has its structure inferred d3ou- their interactive application and graphical specification. Ta-
ble.Double rather thaninteger.Integer.Integer.Integehis  ble 1 gives formal definitions for these transforms. Addi-
arises becaus®ouble is a more concise structure than tional illustrative examples and proofs of expressive power
Integer.Integer This could be avoided either by defin- are given in the full version of the paper [22].



Transform Definition
Format | 6(R.7, ) = (o e g e @) [ @) €7
Add a(R, x) = {(a1,...,an,2) | (a1,...,an) € R}
Drop T(R,i) = {((14, ..,aifl,aprl,...,an)|(a1,...,an)GR}
Copy | w((@n..van)d) = Alarsramas)| (a1, an) € R}
Merge M((a’h --7an)7i7j7g|ue) = {(a17 "7ai—17ai+17~~~7aj—17aj+17"-7an7ai@glue@aj) |(a17"~7an) GR}
Split w((ai,...,an),4,splitte = {(a1,...,ai-1,Qit1, ..., an, left(as, splitter), right(a;, splitter)) | (a1,...,an) € R}
Divide 6(((11, ..,an),i,preo) = {(al, ..,ai_l,ai+1,...,an,ai,null) | (a1,...,an) € R/\prec{ai)} @]
{(al, ey Qi—1, Q41 e ey O,y nuII, ai) | (al, ey an) €ERA _‘predai)}
Fold )\(R,ihig,...ik) = {(a1, ..,ail_l,ail_,_l,...,aiZ_l,aiTH,...,aik_l,aik_,_l,...,an,ai,)
(a1,...,an) E RAN1 <1<k}
Select o(R, pred = {(a1,...,an) | (a1,...,an) € RApPred(as,...,an))}

Notation: R is a relation withn columns.i, j are column indices and; represents the value of a column in a rawand glue are
values. f is a function mapping values to values® y concatenates andy. splitter is a position in a string or a regular expression,
left(x, splitter) is the left part ofr after splitting by splitter. pred is a function returning a boolean.

Table 1: Definitions of the various transformdnfold is defined in the full paper [22].

Stewart.Bob Format Bob Stewa tpartly in data values, and partly in the schema, as shc_)wn in
AnnaDavis (), (%) to \2\1/AnnaDavis Figure 8. Fold "flattens” tables by converting one row into
Dole Jerry[ Jerry Dole| multiple rows, folding a set of columns together into one col-
JoanMarsh JoanMarsl umn and replicating the rest. Conversbhyfold "unflattens”
Splitat'' tables; ittakeswvo columns, collects rows that have the same
Bob | Stewart  Merges Bob | Stewart values for all the pther columns, and unfolds the two chosen
Anna | Davis V——— Annal Davis columns. Values in one column are used as column names to
Jerry | Dole Jerry| Dole align the values in the other column. Figures 8 and 9 show
Joan | Marsh Joan| Marsh an example with student grades where the subject names are

demoted into the row viBormat, grades ar€olded together,
and thenSplit to separate the subject from the gradreld
andUnFold are adapted from the restructuring operators of

Value Translation SchemaSQL [16], and are discussed in more detalil in the
full paper [22].

The Format transform applies a function to every value in )

a column. We provide built-in functions for common oper-Power of Transforms: As we prove in the full paper [22],
ations like regular-expression based substitutions and arit?€se transforms can be used to perform all one-to-many row
metic operations, but also allow user defined functions. ColMappings of rowsold anduUnfold can also be used tdatten

umn and table names can themotednto column values us- tables, converting them to a form where column and table

ing special characters in regular expressions; these are usefi@mes are all literals and do not have data values. For a for-
in conjunction with theFold transform described below. mal definition of (un)flattening and an analysis of the power

. of Fold andunfold, see [16].
One-to-one Mappings of Rows
One-to-one transforms are column operations that transforfh2  Interactive Application of Transforms

individual rows. As illustrated in Figures 6 and 7, they canyg want to apply the transforms on tuples incrementally, as

be used to unify data collected from different sources. they stream in, so that the effects of transforms can be imme-
TheMerge transform concatenates values in two columnSgiately shown on tuples visible on the screen of the Ul. It also

optionally interposing a constant (the delimiter) in the mid-je(s the system pipeline discrepancy detection on the results

dle, to form a single new columrsplit Splits a column into ¢ the transforms, thereby giving the interactivity advantages
two or more parts, and is used typically to parse a value intQescribed in the introduction.

its constituent parts. The split positions are often difficult

to specify if t_he_ data is not well s_t_ructured. We allow sp_lit— transforms as well as theold transform are functions on a
ting by specn‘ymg charac'ger positions, regular expressmnss"ingle row. Hence they are easy to apply incrementally.
or by interactively performing splits on example values (Sec- HoweverUnfold operates on a set of rows with match-

tion 4.3). . . ! S .
Drop, Copy, andAdd allow users to drop or copy a col- mg_values. Since this could potentially mvolvg_scannmg_the
jentire data, we do not allownfold to be specified graphi-

umn, or add a new column. Occasionally, logically differen X . o
values (maybe from multiple sources) are bunched into th(éa”y' For displaying r_ecords on the screen We can avoid this
roblem by not showing a complete row but instead show-

same column, and we want to transform only some of thenfh more and more columns as distinct values are found, and
Divide conditionally divides a column, sending values into 9 '

one of two new columns based on a predicate. filling data values in these cqumn; as the corresp_o_ndi_ng in-

] put rows are read. Such progressive column addition in the
Many-to-Many Mappings of Rows spreadsheet interface could confuse the user; hence we plan
Many-to-Many transforms help to tackle higher-orderto implement an abstraction interface where all newly cre-
schematic heterogeneiti¢$8] where information is stored ated columns are shown as one rolled up column. When

Figure 6: Using-ormat, Merge andSplit to clean name for-
mat differences

Among the transforms discussed above, all the one-to-one



Such,Bob _ Name¢MathBio|» o matdNam —
Ann__|Davis Ann| 43 | 78|(demotes)Ann [Math:43Bio: 78 Nam NamgMathBio Sci
Dole,Jerry Bob| 96 [54 ' Bob [Math:96Bio:54 AnnaMath43 Annal 43 |78
Joan |Song
Divide (ke * ) {L JLFO'O' Anna Bio [78uUnfold(2.3)Bob | 96 |54
SUChBob : ’\,lb\amEM 5 s '\"B\am — Bob [Math 96 Joan 79
. i nn |Ma plit nn |Math: -
Ann|Davis Ann | Bio | 78| <——— Ann | Bio:78 Bob | Bio |54
Dole,Jerr / Bob |Math 96 Bob |Math:96 Joan Sci |79
oansong Bob | Bio | 54 Bob | Bio:54
Figure 7: Divide-ing to sepa- Figure 9:Unfold-ing into three columns

rate various name formats Figure 8:Fold-ing to fix higher-order variations
the user clicks to unroll the column it expands into a set of ~* SpPlita stringq (of characters, ... wy,) using structures

columns corresponding to the distinct values found so far. * 51,59, Sk

void LeftRight(q,S1, ... Sk) {
) ) If kK == 0, checkifq is empty
Transforms likeAdd, Drop, Copy, Fold, andMerge are sim- for all prefixesw . . . w; of ¢ satisfyingS; do
ple to specify graphically. Users can highlight the desired LeftRight(w;t1 . .. Wm, S2S3 ... Sk)
columns and pick the appropriate transform.

However Split is often hard to specify preciselySplits
are needed to parse values in a column into consituent part&id DecSpecificity(q,S1, - . - Sk) {
as illustrated in Figure 10. This is an important problem Letwvq,vs,...v, be the example values used
for commercial integration products. Tools likgicrosoft to infer the structures for the split.
SQL Server andAccess have wizards for parsing ASCll data  Letz; 12,2 ... x; 1 be the user-specified split for each
files with constant delimiters. There are many research and As in Section 3.2, compute for all structurgs
commercial “wrapper-generation” tools (e graneus [12], sp; = space needed to express;, . ..z, ; UsingS;
Cohera Net Query (CNQ) [8], Nodose [2]) that tackle this Choose the structur®; with the least value ofp;.
problem for “screen-scraping” unstructured data found on for all substringsy, . . . w; of g satisfyingS; do
web pages. However these tools often require sophisticated DecSpecificity(w; . . . wa—1, S1...Sj-1)
specification of the split, ranging from regular expression DecSpecificity(wp+1 - - . W, Sjt1 ... Sp)
split delimiters to context free grammars. But even thesé
cannot always be used to split unambiguously. For instance

in the first entry of Figure 10, commas occur both in delim-  some values may still not be unambiguously parseable
iters and in the data values. As as result, users often have lt@ﬂng the inferred structures. Other values may be anoma-
write custom scripts to parse the data. lous and not match the inferred structure at all. We flag all
4.3.1 Split by Example such values as errors to the user, who can apply other trans-

In Potter's Wheel we want users to be able to parse and spff?rms to split them, or clean the data further.
values without specifying complex regular expressions of.3.2 Splitting based on inferred structures
writing programs. Instead we want to allow users to specSince the structures inferred involve domains with Turing-
ify most splits by performing them on example values. completematch functions, splitting a value based on these is
The user selects a few example valugswvq,...,v,  noteasy. The first algorithm of Figure 1%ftRight, is a sim-
and in a graphical, direct-manipulation [25] way showsple recursive algorithm for parsing a value that considers the
the positions at which these values are to be split, intinferred structures from left to right, and tries to match them
sub-components(zi,1212...T1,m), (T2,1...%2,m),..., against all prefixes of the unparsed value. This algorithm
(Zn1-.-zn,m) respectively. As is done during discrepancyis potentially very expensive for “imprecise” structures that
detection, the system infers a structure for each ofittreew  match many prefixes. Quick parsing is particularly needed
columns using MDL, and uses these structures to split thehen the split is to be applied on a large dataset after the
rest of the values. These structures are general, ranging framser has chosen the needed sequence of transforms.
simple ones like constant delimiters or constant length de- Therefore we use an alternative algorithm calleet-
limiters, to structures involving parameterized user-definedpecificity (the second algorithm of Figure 11) that matches
domains like tWord(len 3) Word(len 3) Integer(len 2) time the inferred structures in decreasing order of specificity. It
Integer(len 4) (for the output of the UNIXdate command). first tries to find a match for the most specific structure, and
Therefore they are better than simple regular expressions titen recursively tries to match the remaining part of the data
identifying split positions. value against the other structures. The motivation is that in
Figure 10 contains some sample structures that Potterthe initial stages the most specific structures (typically con-
Wheel extracts from example splits on different datasets. Wstant delimiters) will match only a few substrings, and so the
see that even for the ambiguous-delimiter case described earlue will be quickly broken down into smaller pieces that
lier, it can extract good structures that can be used to splidan be parsed later. The specificity of a structure is com-
unambiguously. puted as the sum of the description lengths of the (appropri-

4.3 Graphical Specification of Transforms

Figure 11: Two methods of splitting a value.



Example Values Split By User Inferred Structure Comments
(| is user specified split position)

Parsing is doable despite no good de-

(< & > < Money >) limiter. A regular expressiomlomain
can infer a structure of $[0-9,]* fo
last component.

Taylor, Jane |, $52,072
Blair, John|, $73,238
Tony Smith|, $1,00,533

MAA to[ SIN
JFK |to] SFO (<len 3 identifier> < £* > Parsing is possible despite multiple
LAX |-| ORD < len 3 identifier>) delimiters.
SEA|/| OAK
t

321 Blake #7 |, Berkeley |, CA 94720 | (<numberé&* > <’ word > Parsing is easy because of consisten
719 MLK Road|, Fremont|, CA 95743 <’} (2 letter word) (5 letter integer))  delimiter.

Figure 10: Parse structures inferred from various split-by-examples

ate substrings) of the example values using the structure. Tliata [1, 7, 16, 18]. Our horizontal transforms are very similar
less specific structures need to be used only after the value the restructuring operators of SchemaSQL [16]. However
has been decomposed into much smaller substrings, and ther focus is on the ease of specification and incremental ap-
splitting is not too expensive on these. plication, and not merely on expressive power.

To study the effect of parsing according to specificity The research literature on finding discrepancies in data
we ranDecSpecificity, LeftRight, andincSpecificity on a few  has focused on two main things: general-purpose algorithms
structures.IncSpecificity is the exact opposite dfecSpeci-  for finding outliers in datad.g.[3]), and algorithms for find-
ficity and considers structures starting with the least specifimg approximate duplicates in data [13, 17, 10]. There has
one; it illustrates how crucial the choice of starting struc-also been some work on finding hidden dependencies in data
ture is. Figure 12 compares the throughput at which one caend correspondingly their violations [14]. Such general pur-
split values using these methods. We see MleaSpecificity  pose algorithms are useful as default algorithms for Potter’s
performs much better than the others, with the improvemewheel’s discrepancy detector. However we believe that in

being dramatic at splits involving many structures. many cases the discrepancies will be domain-specific, and
. . ) that data cleaning tools must handle these domains extensi-
4.4 Undoing Transforms and Tracking Data Lineage bly.

The ability to undo incorrect transforms is an important re- A companion problem to data cleaning is the integration
quirement for interactive transformation. However, if theof schemas from various data sources. We intend to extend
specified transforms are directly applied on the input datePotter's Wheel with a system that handles interactive speci-
many transforms (such as regular-expression-based subdieation of schema mappings (such as Clio [19]).

tutions and some arithmetic expressions) cannot be undone Extracting structure from poorly structured data is in-
unambiguously — there exist no “compensating” transformsgreasingly important for “wrapping” data from web pages,
Undoing these requires “physical undd’e., the system and many tools exist in both the research and commercial
has to maintain multiple versions of the (potentially large)world (e.g. [2, 12, 8]). As discussed in Section 4.3, these
dataset. tools typically require users to specify regular expressions or

Instead Potter's Wheel never changes the actual datgammars; even these are often not sufficient to unambigu-
records. It merely collects transforms as the user adds thermusly parse the data, so users have to write custom scripts.
and applies them only on the records displayed on the screefihere have also been some learning-based approaches for
in essence showing a view using the transforms specified stutomatic text wrapping and segmentation [15, 4]. We be-
far. Undos are done “logically,” by removing the concernedieve, however, that a semi-automatic, interactive approach
transform from the sequence and “redoing” the rest beforasing a combination of graphical operations and statistical
repainting the screen. methods is more powerful.

This approach also solves the ambiguous data lineage There has been some work in the machine learning litera-
problem of whether a discrepancy is due to an error in théure [20, 5] and the database literature [11] on inferring reg-
data or because of a poor transform. If the user wishes talar expressions from a set of values. However as argued be-
know the lineage of a particular discrepancy, the system onffore, for detecting discrepancies it is important to infer struc-
needs to apply the transforms one after another, checking faures in terms of generic user-defined domains, in a way that
discrepancies after each transform. is robust to structural data errors.

5 Related Work 6 Conclusions and Future Work

The commercial data cleaning process is based on ETL too¥ata cleaning and transformation are important tasks in
and auditing tools, as described in the introduction. [6, 9many contexts such as data warehousing and data integra-
give good descriptions of the process and some popular toolon. The current approaches to data cleaning are time-
There is much literature on transformation languages, egonsuming and frustrating due to long-running noninterac-
pecially for performing higher-order operations on relationative operations, poor coupling between analysis and trans-



Example Values Structure to Split by Split Throughput (usecs/value)

(Int=Integer, Dbl=Double) (DecSpec  LeftRight  IncSpec)
8:45 <Int> <> <Int> 5.96 9.18 9.18
1997/10/23 <Int></><Int></><Int> 11.52 17.95 57.89
12.8.15.14 - - [01/May/2000 ... "GET ... 404 30&<Dbl’) Dbl > <’--[" > < £ > 144.8 539.8 27670

6(<Dbl’.’ Dbl ><'--[ ><&" >
<Int’’Int >)

- . (<Dbl’’ Dbl > <- - [> <Int/Word/Int>
12.8.15.14 - - [01/May/2000 ... "GET ... 404 3p6 <'GET>< & ><Int’’ Int >) 233.55 1960.95 1036090

12.8.15.14 - - [01/May/2000 ... "GET ... 404 30 219.38 943.8 152559(

Figure 12: Comparison of split throughputs using three methods.

formation, and complex transformation interfaces that often [4] V. Borkar, K. Deshmukh, and S. Sarawagi. Automatic seg-
require user programming. mentation of text into structured records.SIGMOD, 2001.

We have described Potter's Wheel, an interactive system[5] A. Brazma. Efficient algorithm for learning simple regular
for data transformation and cleaning. By integrating discrep- ~ €XPressions from noisy examples. litil. Wksp. on Algorith-
ancy detection and transformation, Potter's Wheel allows . M'¢ hearr;:ng_ Theor,y1994.| o of housi
users to gradually build a transformation to clean the data by[6] S. Chaudhuri and U. Dayal. An overview of data warehousing

. . . and OLAP technology. 1I81IGMOD Record1997.

addmg transforms as dlscrepanm_es are det(_acted. Users caﬁ] W. Chen, M. Kifer, and D. S. Warren. HiLog: A founda-
specify transforms through gr.aph|cal operations or through™ * 4io for higher-order logic programming. ournal of Logic
examples, and see the effect instantaneously, thereby allow-  programming volume 15, pages 187-230, 1993.
ing easy experimentation with different transforms. [8] Cohera Corp. http://www.cohera.com.

We have seen that parsing strings using structures of userf9] Data extraction, transformation, and loading tools (ETL).
defined domains results in a general and extensible discrep- www.dwinfocenter.org/clean.html.
ancy detection mechanism for Potter's Wheel. Such domain§0] H. Galhardas, D. Florescu, D. Shasha, and E. Simon. AJAX:
also provide a powerful basis for specifyisplit transfor- An extensible data cleaning tool. 81GMOD, 2000.
mations through example values. In future we would like tol11] M. N. Garofalakis et al. A system for extracting document
investigate specification of other complex transforms such a§ type descriptors from XML documents. 8IGMOD, 2000.

2] S. Grumbach and G. Mecca. In search of the lost schema. In

the Format transform, through examples.

. ICDT, 1999.

Our focus with Potter's Wheel has so far been on flat,;3] \. Herandez and S. Stolfo. Real-world data is dirty: Data
tabular data. However, nested data formats like XML are be- ~ ¢leansing and the merge/purge problemata Mining and
coming increasingly common. While much there are many Knowledge Discover?(1), 1997.
research efforts on transformation and query languages fqn4] J. Kivinen et al. Approximate dependency inference from
such data, it would be interesting to investigate graphicaland  relations.Theoretical Computer Scienck49(1), 1995.
example-based approaches for specifying these. [15] N. Kushmerick. Wrapper induction: efficiency and expres-

While we have so far looked at Potter's Wheel as a data _ SivenessaAtrtificial Intelligence 118, 2000. _
cleaning tool, we would like to investigate its effectivenessl16] V-S. Lakshmanan etal. SchemaSQL: A language for intere-

as a client interface to a interactive query processing sys-  °Perability in relational multi-database systems. VIDDB,
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" . . 7] M. Lee etal. Cleansing data for mining and warehousing. In
be viewed as refinements to the ongoing query, and can be DEXA 1999.
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