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Goals for Today
n Exposure to online query processing algorithms and 

fundamentals
n Usage examples
n Basic sampling techniques and estimators
n Preferential data delivery
n Online join algorithms
n Relation to OLAP, etc.
n Some thoughts on research directions

n More resources to appear on the web
n Annotated bibliography
n Extended slide set
n Survey paper
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Road Map
n Background and motivation

n Human-computer interaction
n Tech trends and prognostications
n Goals for online processing

n Examples of online techniques
n Underlying technology
n Related work
n Looking forward
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Human-Computer Interaction
n Iterative querying with progressive refinement
n Real-time interaction (impatience!)

n Spreadsheets, WYSIWYG editors
n Modern statistics packages
n Netscape STOP button

n Visually-oriented interface

n Approximate results are usually OK
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Disk Appetite

n Greg Papadopoulos, CTO Sun:
n "Moore's Law Ain't Good Enough" (Hot Chips ’98) 
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Source: J. Porter, Disk/Trend, Inc.
http://www.disktrend.com/pdf/portrpkg.pdf 6

The Latest Commercial  
Technology
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Drawbacks of Current Technology

n Only exact answers are available
n A los ing proposit ion as data volume grows

n Hardware improvements not suf f ic ient

n Interactive systems fail on massive data
n E.g. ,  spreadsheet programs (64Krow limit)

n DBMS not interactive
n No user feedback or control  (“back to the 60’s”)

n Long process ing t imes 

n Fundamental  mismatch with preferred modes of HCI

n OLAP: a partial solution
n Can’t handle ad hoc queries or data sets

8

Goals for Online Processing

n New “greedy” performance regime
n Maximize 1st derivative of the “mirth index”

n Mirth defined on-the-fly  

n Therefore need FEEDBACK and CONTROL

Time

☺
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Road Map

n Background and Motivation

n Examples of Online Techniques
n Aggregation, visualization, cleaning/browsing

n Underlying technology

n Related work

n Looking Forward
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Online Aggregation

n SELECT AVG(temp) FROM t GROUP BY site

n 330K rows in table

n the exact answer:
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Online Aggregation, cont’d

n A simple online aggregation interface (after 74 rows)
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Online Aggregation, cont’d

n After 834 rows:
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Example: Onl ine Aggregation

Additional
Features:

Speed up
Slow down
Terminate
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Online Data Visualization

n In Tioga DataSplash

15

Online Enumeration

n Potter’s Wheel [VLDB 2001]

n Scalable spreadsheet
n A fraction of data is materialized in GUI widget

n Scrolling = preference for data delivery in a quantile

n Permits “fuzzy” querying

n Interactive data cleaning

n Online structure and discrepancy detection

n Online aggregation 
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Scalable Spreadsheets
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Visual Transformation Shot

18
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Road Map

n Background and motivation

n Examples of online techniques

n Underlying technology
n Building blocks: sampling, estimation

n Preferential data delivery

n Pipelined adaptive processing algorithms

n Related work

n Looking forward
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Sampl ing – Design Issues

n Granularity of sample
n Instance-level (row-level): high I/O cost

n Block-level (page-level): high variability from clustering

n Type of sample
n Often simple random sample (SRS)

n Especial ly for on- the-fly

n With/without replacement usually not critical

n Data structure from which to sample
n Files or relational tables

n Indexes (B+ trees, etc)
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Row-level Sampling Techniques

n Maintain fi le in random order
n Sampling = scan

n Is file initially in random order?
n Stat ist ical tests needed: e.g., Runs test, Smirnov test

n In DB systems: cluster via RAND function

n Must “freshen” ordering (online reorg)

n On-the-fly sampling
n Via index on “random” column

n Else get random page, then row within page
n Ex: extent- map sampl ing

n Problem: var iable number of records on page
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Acceptance/Reject ion Sampling

n Accept row on page i with probabil ity = ni/nMAX

n Commonly used in other settings
n E.g. sampling from joins

n E.g. sampling from indexes
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Cost of Row-Level Sampling
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Estimation for Aggregates

n Point estimates
n Easy:  SUM,  COUNT,  AVERAGE

n Hard: MAX, MIN, quant i les, dist inct values 

n Confidence intervals – a measure of precision

n Two cases: single-table and joins
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Confidence Intervals
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The Good and Bad News

n Good news: 1/n 1/2 magic (n chosen on- the-fly)

n Bad news: needle-in-a-haystack problem
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Sampling Deployed in Industry

n “Simulated” Bernoulli sampling

n SQL:  SELECT * WHERE RAND()  <= 0.01

n Similar capabi l i ty in SAS

n Bernoulli Sampling with pre-specified rate

n Informix, Oracle 8i ,  (DB2)

n Ex:  SELECT *  FROM T1 SAMPLE ROW(10%),  T2

n Ex:  SELECT *  FROM T1 SAMPLE BLOCK(10%),  T2

n Not for novices

n Need to pre- specify precis ion 

n no feedback/control

n recal l  the “mult i resolut ion” patterns from example

n No est imators provided in current systems
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Precomputat ion Techniques

n Two components

n Data reduct ion (often expensive)

n Approximate reconstruct ion (quick)

n Pros and cons

n Eff ic iency vs flexibil ity

n Class of quer ies that can be handled

n Degree of precis ion

n Ease of  implementat ion

n How much of  system must  be modi f ied

n How sophist icated must developer be?

n More widely deployed in industry

n Will give overview later
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Road Map

n Background and motivation

n Examples of online techniques

n Underlying technology
n Building blocks: sampling, estimation

n Preferential data delivery

n Pipelined adaptive processing algorithms

n Related technology: precomputation

n Looking forward
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Preferential Data Delivery

n Why needed
n Speedup/slowdown arrows

n Spreadsheet scrollbars

n Pipeline quasi-sort

n Continuous re-optimization (eddies)

n Index stride
n High I/O costs, good for outliers

n Online Reordering (“Juggle”) 
n Excellent in most cases, no index required

n [VLDB ’99, VLDBJ ’00]
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Online Reordering 

n Deliver “interesting” items first
n “Interesting” determined on the fly

n Exploit rate gap between produce and 
process/consume

produce

disk

process consume

join

transmit
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Online Reordering

n Deliver “interesting” items first
n “Interesting” determined on the fly

n Exploit rate gap between produce and 
process/consume

S

T
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p r o d u c e r e o r d e r p r o c e s s c o n s u m e

disk

jo i n
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Mechanism

n Two threads -- prefetch from input
-- spool/enrich from auxiliary side disk

n Juggle data between buffer and side disk

n keep buffer full of “interesting” items

n getNext chooses best item currently on buffer

n getNext, enrich/spool decisions -- based on reordering policy

n Side disk management

n hash index,  populated in a way that postpones random I/O

n play both sides of sort/hash dual i ty

buffer

spoolprefetch enrich

getNext

side disk

produce

process/consume
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Policies

n “good” permutation of items t1 …t n to tΠ1
…tΠn

n quality of feedback for a prefix tΠ1
tΠ2

…tΠk

QOF(UP(tΠ1
), UP(tΠ2

), … UP(tΠk 
)) , UP = user preference 

n determined by appl icat ion

n goodness of reordering: dQOF/dt

n implication for juggle mechanism 

n process gets i tem from buffer that increases QOF the most   

n juggle tr ies to maintain buffer with such items

t ime

QOF
☺
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QOF in Online Aggregation

n avg weighted confidence interval

n preference acts as weight on confidence interval

n QOF = −∑∑ UP i / (n i)
½ , n i = number of  tup les processed f rom 

group i

⇒ process pulls items from group with max UP i  / ni
3/2

⇒ desired ratio of group i in buffer = UP i

2 /3
/∑∑ j UP j

2/3

n juggle tries to maintain this by enrich/spool

n Similar derivations for other preferences
n e.g. explicit rates, explicit ranking, etc.

36

Road Map

n Background and motivation

n Examples of online techniques

n Underlying technology
n Building blocks: sampling, estimation, pre-computation

n Preferential data delivery

n Pipelined adaptive processing algorithms

n Related work

n Looking forward
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Pipel ined Data Processing

n Never, ever wait for anything to finish

n Selection: no problem

n Grouping: hash, don’t sort

n Sorting: juggle if possible

n Joins?

n Sample of joins vs. join of samples

SELECT AVG(R.a * S.b)
FROM R, S
WHERE R.c = S.c
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Tradit ional Nested Loops
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Ripple Joins

n designed for online performance goals
n Completely pipelined

n Adapt to data characteristics

n designed for online performance goals

n simplest version
n read new tuples s from S and r from R

n join r and s

n join r with old S tuples

n join s with old R tuples

[SIGMOD ’99]
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Basic Ripple Join
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Ripple Joins, cont’d

n Variants: 
n Block: minimizes I/O in alternating nested loops

n Index: coincides with index-nested loop

n Hash: symmetric hash tables

n Adaptive aspect ratio
n User sets animation rate (via slider)

n System goal: 

n minimize CI length

n Subject to t ime constraint

n System solves optimization problem (approximately)

n Samples from higher-variance relation faster
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Ripple Joins, cont’d

n Prototypes in Informix, IBM DB2

n Ongoing work on scalabil ity issues
n Memory compaction technique

n Parallelism

n Graceful degradation to out-of-core hashing
n a la Tukwila, XJoin, but sensit ive to statist ical issues

n Nested queries

n Optimization issues

n A number of API and other systems issues
n DMKD journal paper on Informix implementation

n Forthcoming paper on sampling in DB2
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Road Map

n Background and motivation

n Examples of online techniques

n Underlying technology

n Related work
n Online query processing

n Precomputation

n Looking forward
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Related Work on Online QP

n Morgenstein’s PhD, Berkeley ’80

n Online Association Rules
n Ng, et a l ’s  CAP, SIGMOD ’98

n Hidber ’ s  CARMA, SIGMOD ‘99

n Implications for deductive DB semantics
n Monotone aggregat ion in  LDL++, Zanio lo and Wang 

n Online agg with subqueries
n Tan, et al .  VLDB ’99

n Dynamic Pipeline Scheduling
n Urhan/Frankl in VLDB ’01

n Pipelining Hash Joins
n Raschid, Wi lschut/Apers, Tukwi la, Xjoin

n Relat ion to semi-naive evaluat ion

n Anytime Algorithms
n Zilberstein, Russell, et al.
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Precomputation: Explicit

n OLAP Data Cubes (dril l-down hierarchies)
n MOLAP, ROLAP, HOLAP

n Semantic hierarchies
n APPROXIMATE (Vrbsky, et al.)

n Query Relaxation, e.g. CoBase

n Multiresolution Data Models (Silberschatz/Reed/Fussell)

n More general materialized views
n See Gupta/Mumick’s text
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Precomputat ion: Stat. Summaries

n Histograms
n Original ly for aggregat ion queries, many f lavors

n Extended to enumerat ion quer ies recent ly

n Multi- d imensional  h istograms

n Parametric estimation
n Wavelets and Fracta ls 

n Discrete cosine transform

n Regress ion 

n Curve f i t t ing and spl ines 

n Singular-Va lue Decompos i t ion (aka LSI, PCA)

n Indexes: hierarchical histograms
n Ranking and pseudo- ranking

n Aoki ’s use of GiSTs as est imators for ADTs

n Data Mining
n Cluster ing, c lassi f icat ion, other mult id imensional models
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Precomputed Samples

n Materialized sample views
n Olken’s original work

n Chaudhur i  et al.: join samples

n Stat ist ical  inferences compl icated over “recycled” samples?

n Barbará’s quasi-cubes

n AQUA “join synopses” on universal relation

n Maintenance issues
n AQUA’s back ing samples

n Can use fancier/more efficient sampling techniques
n Strat i f ied sampling or AQUA’s “congress ional”  samples

n Haas and Swami AFV statistics
n Combine  precomputed “outl iers” with on- the-f ly samples
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Stratif ied Sampling
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Road Map

n Background and motivation

n Examples of online techniques

n Underlying technology

n Related Work

n Looking forward
n Adaptive systems

n Human-centered systems
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Looking Forward: 
Adaptive Systems

n Observation/Decision ≈ Modeling/Prediction
n usually statist ical

n Already critically important in today’s systems
n And imagine how important in ubiqui tous comput ing!

Observe Environment

Make Decision

Act

53

A DBMS Tradit ion

n One instance: System R optimization

n Observe: Runstats

n Decide: Query Opt imizat ion

n Act: Query Processing

n A powerful aspect of our technologies

n Data independence & dec larat ive languages

n Yet quite coarse-grained

n Runstats once per day/week

n Actions only per-query

n Disk resource management:  index and matv iew select ion

n Memory resource management:  buf fers  and sort/hash space

n Concurrency management:  admiss ion contro l
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“Built-in” adaptivity

n Info systems should have adaptivity as a basic goal
n Not just best- case performance

n Needs to pervade system
n Core architectural work to be done here

n E.g. pipel ining required for mult i- operator adapt iv i ty
n Observe more than one thing at a t ime

n E.g. adaptive operators (a la r ipple join)

n E.g. adapt ive opt imizat ion architectures (a la Eddies)

n E.g. unify query processing with database design

n Adaptivity should be built-in, not “bolted-on”
n Wizards to turn exist ing knobs

n Less helpful

n Certainly less elegant

n Might be technical ly more diff icult!
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Looking Forward:
Human-Centered Systems

n Annual plea for UI work in DB Directions Workshops
n UI’s perceived as “soft”,  hard to measure/publ ish

n Yet people use our systems
n And arguably we are try ing to make them better for people

n Problem: our performance metrics
n “Mirth index” vs. wal l- clock time

n One can f ind reasonable “hard” metr ics for mirth
n Many of these metr ics may be stat ist ical

n Also consider “woe index”, e.g. in maintainabi l i ty

n Most of these indices have to do with user t ime
n Not, e.g., resource uti l izat ion

n Good UI work need not require good UIs!
n Can attack new metr ics direct ly

n We don’t have to go back to art school
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Lessons Learned

n Dream about UIs, work on systems
n User needs drive systems design!

n Systems and statistics intertwine

n All 3 go together naturally
n User desires and behavior: 2 more things to model, predict

n “Performance” metrics need to reflect key user needs

“What unlike things must meet and mate…”
-- Art, Herman Melvi l le

57

More?

n Annotated bibliography & slides soon…

http://control.cs.berkeley.edu/sigmod01/


